A Multi-Wavelength Study of BCGs in Cooling Flow Clusters with the MMTF

Michael McDonald
Astronomy PhD Student
University of Maryland
Supervisor: Sylvain Veilleux
Massive galaxy clusters have L_X high enough in the central region that the X-ray plasma should cool radiatively in less than a Hubble time.

$$\dot{M} = \frac{2L\mu m}{5kT}$$

Should dump 10-100 $M_\odot\,\text{yr}^{-1}$ of cool gas on the BCG

- Not seen!
- Invoke AGN feedback to prevent cooling…
 - “Housekeeping mode”
Warm Ionized Gas in BCGs

- A distinguishing property of cooling flow clusters is the presence of ionized gas in the BCG.
 - i.e. Perseus A (NGC1275)
- In local Universe, typically see thin, filamentary morphology.
- Hard to build large database due to the rarity of rich clusters
 - i.e. few at a given z

(Perseus A; Conselice 2001)
Warm Ionized Gas in BCGs

Several theoretical explanations for the presence and heating of the gas:

- Star formation
- Buoyant radio bubbles
- Gas drag in the cooling flow
- Cosmic ray heating
- Stripped gas from infalling galaxies

But hard to argue for a formation scheme with only 1-2 systems!

(Perseus A; Conselice 2001)
1. Background: The Maryland-Magellan Tunable Filter

The Maryland Magellan Tunable Filter

- PI: Sylvain Veilleux
 - 3 nights/yr guaranteed
- On Baade 6.5m telescope in Chile
 - DIQ ~ 0.4” - 0.7”
- Wavelength coverage ~ 5000 - 9200Å
- Bandwidth ~ 6 - 20Å
 - Low resolution
- FOV ~ 27’ x 27’
 - Largest FOV of any FP currently in operation
- Data reduction pipeline fully operational.
Abell 1795 – A Pilot Study

Cowie et al. (1983) McDonald & Veilleux (2009)
A Multi-Wavelength Database

- Sample of 23 galaxy clusters with a wide variety of properties
 - 1-2 orders of magnitude range in dM/dt, L_x, M_x, T_x
 - 23/23 have Hα & NIR imaging from MMTF and 2MASS.
 - 19/23 have X-Ray & UV imaging
 - X-ray from Chandra (19/23)
 - UV from GALEX & XMM-OM (21/23)
 - 18/23 have VLA 1.4 GHz fluxes

<table>
<thead>
<tr>
<th>(1) Name</th>
<th>(2) z</th>
<th>(3) E(B-V)</th>
<th>(4) T_x</th>
<th>(5) M_class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abell 0085</td>
<td>0.0557</td>
<td>0.038</td>
<td>6.5</td>
<td>108</td>
</tr>
<tr>
<td>Abell 0133</td>
<td>0.0569</td>
<td>0.019</td>
<td>3.5</td>
<td>110</td>
</tr>
<tr>
<td>Abell 0478</td>
<td>0.0881</td>
<td>0.517</td>
<td>6.8</td>
<td>736</td>
</tr>
<tr>
<td>Abell 0496</td>
<td>0.0329</td>
<td>0.132</td>
<td>4.8</td>
<td>134</td>
</tr>
<tr>
<td>Abell 0644</td>
<td>0.0704</td>
<td>0.122</td>
<td>6.5</td>
<td>136</td>
</tr>
<tr>
<td>Abell 0780</td>
<td>0.0539</td>
<td>0.042</td>
<td>4.7</td>
<td>222</td>
</tr>
<tr>
<td>Abell 1644</td>
<td>0.0475</td>
<td>0.069</td>
<td>5.1</td>
<td>12</td>
</tr>
<tr>
<td>Abell 1650</td>
<td>0.0846</td>
<td>0.017</td>
<td>5.1</td>
<td>122</td>
</tr>
<tr>
<td>Abell 1795</td>
<td>0.0625</td>
<td>0.013</td>
<td>5.3</td>
<td>321</td>
</tr>
<tr>
<td>Abell 1837</td>
<td>0.0691</td>
<td>0.058</td>
<td>2.6</td>
<td>12</td>
</tr>
<tr>
<td>Abell 2029</td>
<td>0.0773</td>
<td>0.040</td>
<td>7.4</td>
<td>431</td>
</tr>
<tr>
<td>Abell 2052</td>
<td>0.0345</td>
<td>0.037</td>
<td>3.4</td>
<td>94</td>
</tr>
<tr>
<td>Abell 2142</td>
<td>0.0904</td>
<td>0.044</td>
<td>10.1</td>
<td>369</td>
</tr>
<tr>
<td>Abell 2151</td>
<td>0.0352</td>
<td>0.043</td>
<td>2.9</td>
<td>166</td>
</tr>
<tr>
<td>Abell 3158</td>
<td>0.0597</td>
<td>0.015</td>
<td>5.3</td>
<td>9.6</td>
</tr>
<tr>
<td>Abell 3376</td>
<td>0.0597</td>
<td>0.056</td>
<td>3.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Abell 4059</td>
<td>0.0475</td>
<td>0.015</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ophiuchus</td>
<td>0.0285</td>
<td>0.588</td>
<td>8.6</td>
<td>41</td>
</tr>
<tr>
<td>Sersic 159-03</td>
<td>0.0580</td>
<td>0.011</td>
<td>2.4</td>
<td>288</td>
</tr>
<tr>
<td>Abell 2580 a</td>
<td>0.0890</td>
<td>0.024</td>
<td>4.3</td>
<td>95</td>
</tr>
<tr>
<td>Abell 3389 a</td>
<td>0.0267</td>
<td>0.076</td>
<td>2.0</td>
<td>22</td>
</tr>
<tr>
<td>Abell 0970 b</td>
<td>0.0587</td>
<td>0.055</td>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>WBL 360-03 b</td>
<td>0.0274</td>
<td>0.028</td>
<td>1.8</td>
<td>10</td>
</tr>
</tbody>
</table>
2. Results: Multi-wavelength Sample

Hα Filaments in BCGs
2. Results: Multi-wavelength Sample

A Multi-Wavelength Database
While several clusters are consistent with heating from young stars, there is a lot of scatter in this relation!

- Other mechanisms may be more important:
 - Cosmic ray heating
 - Conduction from ICM
 - Mechanical energy from a shearing flow
- Too difficult to pursue this without higher quality data
 - FUV data from HST
 - Long-slit spectra along filaments
X-Ray Properties of ICM

- Appears to be a temperature threshold at which Hα filaments are able to form:
 - $kT < 5$ keV

- Strong correlation between cooling rate and the UV or Hα flux.
 - Too little Hα flux to be stars forming out of cooling gas, too much to be purely recombination
X-Ray Properties of ICM

- The Hα emission never extends further than the cooling radius of the ICM!
 - Combined with the correlation between cooling rate (dM/dt) Hα flux in filaments, suggests that the warm gas is linked to the cooling flow.
X-Ray Properties of Filaments

- We can also extract X-ray spectra coincident with the Hα filaments
 - Filaments have:
 - Low temperature
 - High density
 - Low entropy
 - Short cooling time

→ Direct link between warm gas and X-ray cooling flow!
Summary of Results

- The X-ray and Hα morphologies are similar in cases where we see optical filaments.
- There is a strong correlation between the mass of warm gas in filaments and the mass of gas cooling out of the X-ray.
- The warm filaments only extend as far as the X-ray cooling radius.
- The cooling time of the X-ray gas coincident with the warm gas is ~10x less than the surrounding ICM.

➤ The Hα emission is linked to the cooling ICM!
Interpretation of Results

- Hα filaments trace the X-ray cooling flow!
 - Inside of R_{cool}, ICM cools rapidly, collapsing into thin streams which fall onto the BCG at the cluster potential minimum
 - Morphology of warm and hot gas resemble that seen in recent high-resolution hydro sims of gas cooling by Ceverino et al.
 - Heating probably due to a combination of star formation in filaments, conduction from ICM and drag heating.
Work in Progress

- High resolution far-UV survey with HST
 - Are stars forming in the gas filaments?
 - How does the SFR compare to the X-ray cooling rate?
- Extension to galaxy groups
 - Is there a lower mass/temperature limit for the presence of Hα?
- Long-slit spectra of extended filaments and BCGs
 - What ionization processes can be excluded?
 - What are the kinematics of the filaments?
 - Further classification of AGN
- High resolution sub-mm imaging of clusters
 - What is the distribution of the cold molecular gas?
 - Is the amount of cold gas consistent with the cooling flow hypothesis?