Tracing hierarchical galaxy formation with stellar dynamics: From nuclei to halos

Loren Hoffman Hebrew University of Jerusalem UCSC, 8/17/2010

Dynamical imprint of galaxy formation

-Violent relaxation in mergers is incomplete (Lynden-Bell 1967).

-Memory of ICs encoded in integrals of motion (IOM).

-Time-dependence/perturbations -> diffusion in IOM phase space.

-Crossing of orbital boundaries -> erasure of ICs (relaxation).

-To understand galactic structure and evolution, need to identify macroscopic groups of orbits that conserve qualitatively similar IOM.

Stellar orbits are the building blocks of galaxies (images: Poon & Merritt 2001).

Orbital phase space need not be uniformly populated (image: van den Bosch et al. 2008).

Dynamical information in real galaxies

Image: http://seds.org/~spider/ngc/ngc.cgi?NGC4365

NGC 4365: SAURON image

Figure 11. Distribution of stellar particles inside a sphere of 4 kpc radius at 8 kpc from the galactic centre in E vs. L_z space as would be observed by *Gaia*. The different colours show the groups identified by the Mean Shift algorithm. Black open circles denote those for which the time since accretion was successfully derived.

Gomez et al. 2010

The stellar population of the NGC 4365 KDC is indistinguishable from that of the outer galaxy.

Proctor et al. 2009

Spherical potentials

Axisymmetric potentials

-Energy, angular momentum conserved -> orbit confined to plane

-Rosettes (precessing ellipses) uniformly fill annulus $r_0 < r < r_1$ over long times

-Centrifugal barrier shields star from center of potential

Binney & Tremaine 2008

3D triaxial potentials

Box

Inner long-axis tube

Short-axis tube Outer long-axis tube

Binney and Spergel 1982; figure from Hoffman et al. 2010

Poon & Merritt 2001

Imprint of orbital structure on kinematics

Origin of the orbital structure - effect of a CMC

Merritt & Valluri 1997

Kalapotharakos et al. 2004

Barnes & Hernquist 1996, Hopkins et al. 2009

Hoffman et al. 2010

Hopkins et al. 2009

KDCs in 15-20% gas remnants

-450

-150

150

v (km / s)

450 -450

-150

150

v (km / s)

450

SAURON data

NGC4365 - van den Bosch et al. 2008

NGC 4365 - comparison of 3D structure with simulations

Hopkins et al. 2009: 10% "extra light" component in NGC 4365

Constraints from outer kinematics

Outer kinematics II

Outer kinematics III

The SAURON challenge

NGC 4486

Burkert et al. 2008

NGC 5813

Cappellari et al. 2007

More general formation scenarios

1) Complete exploration of merger phase space

2) Bulge formation through Clump migration in "wild disks"

3) Multiple mergers / cosmologically motivated sequences

Binary SMBHs in collisionless galactic nuclei

<u>Requirements:</u> Integrate cuspy system with N ≈ 10⁷⁻⁸ for up to 500-1000 t_{dyn}; suppress relaxation enough to be in empty loss cone regime. <u>Ideal code:</u> Pure triaxial NBSCF (no kicks) until initial spherical loss cone cleared out, switching to MCSCF after that.

The Self-consistent field (SCF) method

$$\rho(r,\,\theta,\,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos\,\theta) [A_{lm}(r)\,\cos\,m\phi + B_{lm}(r)\,\sin\,m\phi] \tag{A}$$
$$\Phi(r,\,\theta,\,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} P_{lm}(\cos\,\theta) [C_{lm}(r)\,\cos\,m\phi + D_{lm}(r)\,\sin\,m\phi] \tag{A}$$

$$\begin{pmatrix} A_{lm}(r) \\ B_{lm}(r) \\ C_{lm}(r) \\ D_{lm}(r) \end{pmatrix} = N_{lm} \sum_{n=0}^{\infty} \tilde{A}_{nl} \begin{pmatrix} \rho_{nl}(r) \\ \tilde{\rho}_{nl}(r) \\ \tilde{\Phi}_{nl}(r) \\ \tilde{\Phi}_{nl}(r) \end{pmatrix} \sum_{k} m_{k} \tilde{\Phi}_{nl}(r_{k}) P_{lm}(\cos \theta_{k}) \begin{pmatrix} \cos m\phi_{k} \\ \sin m\phi_{k} \\ \cos m\phi_{k} \\ \sin m\phi_{k} \end{pmatrix}$$

 1) O(N)
2) Completely parallel
3) No Cartesian softening

Most astrophysical systems modeled with N-body simulations undergo brief episodes of rapid evolution, long periods of slow evolution ($t_{ev} \gg t_{dyn}$).

B)

Binary S/IMBHs in *collisional* nuclei

Milosavljevic & Merritt 2003 Sharp phase space gradients near the loss cone.

<u>Requirements:</u> Integrate cuspy system with N ≈ 10⁷ for up to 500-1000 t_{dyn}; suppress relaxation enough to be in empty loss cone regime *and* accurately treat 2-body relaxation.

<u>Ideal code:</u> Spherical, triaxial MCSCF *with Henon kicks* (note: unlike Spitzer MC, Henon method does not require a Maxwellian distribution!).

Relaxation in N-body simulations

Hernquist & Ostriker 1992

Evolution owing to time fluctuations of coefficients

N = 2.5×10^3 N_{max} = 6, I_{max} = 4

1.05

1.04 1.03 1.02

1.0

0.99

E / E₀, 2K/IUI

Temporal smoothing

Figure 14 motivates a modification to the SCF method that would be impossible or, at best, very difficult to implement in N-body codes, which we refer to as "temporal smoothing." That is, one could imagine setting A'_{000} equal to the global time-average of the values plotted in Figure 14, and then integrating particle orbits in this fixed potential. As implied earlier, particle energies would

FIG. 14.—Expansion coefficient in a purely radial version of the run shown in Fig. 10, as a function of time. A'_{000} differs from the value of A_{000} given by eq. (2.33) by a constant factor so that A'_{000} would be precisely one in the continuum limit.

"Monte-Carlo" implementation

- 1) Initialize $\{m_k, r_k, v_k\}$.
- Compute a(r) from eq'n (B).
- Integrate each particle's orbit separately through δt=εt_{relax}.
- 4) Apply Henon kicks.
- 5) Go back to step 2.

Suppressing relaxation with rare potential updates

Energy conservation is currently an issue for longterm integrations of 10⁴- 10⁵ dynamical times.

Summary

-Merger model predicts a characteristic, physically intuitive orbital structure (though not necessarily unique), observable with SAURON + SMEAGOL

-Power of direct comparisons with dynamical models of observed systems: Physical intuition, some features detectable only this way

-Need for extension to more general formation models – cosmological merger trees, smooth/clumpy gas accretion, ...

-SCF / MC technique ideal for studying nuclear kinematics of SMBH binary nuclei; code under development.