Measuring Halo Bias in Galaxy Cluster Surveys: What Will We Learn About Halo Assembly and Cosmology?

Heidi Wu (KIPAC/Stanford) in collaboration with Risa Wechsler, Michael Busha, Oliver Hahn, and Jeremy Tinker Measuring halo assembly bias is relevant to both astrophysics and cosmology

Wechsler et al. '06; Wu, Rozo, and Wechsler '08

Faltenbacher & White '10

Why do we want to measure assembly bias?

Measuring assembly bias can constrain the correlation between various halo properties

Maccio et al. '07

What are we going to observe?

Home Science Survey Instrumentation Collaboration Formal Documents DES at Work News Contact us

WHAT IS CAUSING COSMIC ACCELERATION?

The discovery that the universe is accelerating presents a deep mystery for cosmology and fundamental physics. What is the nature of the dark energy thought to be responsible for this cosmic speed-up? Do we need a new theory of gravity to replace Einstein's? The Dark Energy Survey aims to address these questions.

- 2011; DECam on the 4-meter Blanco telescope at CTIO (525 nights)
- g, r, i, z, y; 24.3 mag in i + overlapping with SPT and VISTA (J, H, K)
- Survey area = 5000 deg²; volume = $17 \text{ Gpc}^3/\text{h}^3$
- Galaxy clusters selected from optical imaging
 - Cluster sample: $M_{th} = 10^{13.7}~M_{\odot}/h$ and $z_{max} = 1.5$ (~10 5 clusters)

DES Website: http://www.darkenergysurvey.org/

Large Suite Dark Matter Simulations (LasDamas)

McBride, Berlind, Busha, Manera, Scoccimarro, van den Bosch, Wechsler

Name	Box Size (Mpc/h)	Particle Mass (M₀/h)	Total Volume (Gpc ³ /h ³)
Oriana	2400	4.5E+11	550
Carmen	1000	4.9E+10	40
Esmeralda	640	9.0E+09	10
Consuelo	420	1.8E+09	3.0

LasDamas website: <u>http://lss.phy.vanderbilt.edu/lasdamas</u> McBride et al.

Ongoing project I: re-simulations of massive halos in a Gpc box

• Zooming in the region where a massive halo forms and resimulating it with high-resolution particles

• Aiming for calibrating large-scale halo bias and small-scale subhalo properties simultaneously

• Representative of the statistical properties of clusters observable in DES and massive cluster surveys

• Resolving subhalos down to $10^9 M_{\odot}/h$; also relevant to the study of galaxy formation in massive halos

Generating initial conditions

- Multi-scale Initial Conditions (MUSIC, Hahn '10)
 - Allowing multiple levels of refinement
 - Transfer function calculated in the intermediate refinement level
- 2LPT (Crocce et al. '06)
 - Generating full-volume initial conditions with the same modes
 - Cutting and pasting
- Re-simulation targets:
 - Selecting most massive halos and identifying the Lagrangian volumes in the initial condition
 - Highest mass resolution ~108 M_{\odot}/h ; softening ~
 - 5 kpc/h
 - Gadget-2 N-body simulations (dark matter only)

Ongoing project II: scale-dependent bias and mass calibration

DES, Free O–M, $FoM_{Fid} = 17.1$ 0.10 Uncertainty in bias σ_g 0.01 0.01 0.10 Uncertainty in mass function σ_{f}

Wu, Zentner, and Wechsler '10, ApJ

• Halo bias can help cluster mass self-calibration and thus improve the dark energy constraints; accurate calibration of halo bias is essential when no external mass information is present.

• Current clustering measurements are limited to large-scale bias. How does the small-scale bias help mass selfcalibration in surveys?

Small-scale bias calibration

- Calibrating halo bias b(M,r) down to Mpc scale; using the statistics in LasDamas
- Oriana: 41 simulations of box size 2.4 Gpc/h
- The shape of small-scale bias will provide information for cluster mass calibration in surveys.

Summary/Outlook

• Measuring halo bias in upcoming surveys (e.g. DES) will help the understanding of assembly history of dark matter halos. It will also help the cluster mass self-calibration in surveys and improve the constraints on dark energy.

Ongoing projects:

- We are performing re-simulations of massive halos in a Gpc box to study halo bias and halo substructures simultaneously. This will allow us to resolve the substructures hosting all observed galaxies in the most massive systems.

- We are calibrating scale-dependent bias using LasDamas and applying it to cluster mass self-calibration.