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1. A new mass estimator: accurate without 
knowledge of anisotropy/beta

2. Applications of new mass determinations for MW 
dSphs

3. The skinny on slope determinations:
cusp vs. core



Many gas-poor dwarf galaxies have a significant, usually dominant 
hot component. They are dispersion supported, not rotation 
supported. 

Consider a spherical, dispersion supported system whose 
stars are collisionless and are in equilibrium. Let us consider 
the Jeans Equation:

We want mass
Unknown: 
Anisotropy

Radial 
dispersion 
(depends 
on beta)

Assume known: 
3D deprojected 
stellar densityFree func tion
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Using a Gaussian PDF for the observed stellar velocities, we marginalize 
over all free parameters (including photometric uncertainties) using a 
Markov Chain Monte Carlo (MCMC).



Given the following kinematics…
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Given the following kinematics, will you derive 
a better constraint on mass enclosed within:
a)  0.5 * r1/2                        b) r1/2                       c) 1.5 * r1/2

Where r1/2 is the derived 3D deprojected half-light radius of the 
system.
(The sphere within the sphere containing half the light).
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Confidence Intervals:
Cyan: 68%
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It turns out that the mass is best constrained within r1/2, and despite 
the given data, is less constrained for r < r1/2 than r > r1/2.
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Center of system: 
Observed dispersion is radial

Edge of system: Observed 
dispersion is tangential
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Center of system: 
Observed dispersion is radial

Edge of system: Observed 
dispersion is tangential

Newly derived analytic 
equations predic t that 
the effect of anisotropy is 
minimal ~r1/2. E.g.:

Radial Anisotropy

Tangential

Isotropic
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Derived equation under several simplifications:



r1/2 ≈
4/3 * Reff

Derived equation under several simplifications:



Isn’t this just the scalar virial theorem (SVT)?

Nope! The SVT only gives you limits on the total mass of 
a system.

This formula yields the mass within r1/2, the 3D 
deprojected half-light radius, and is accurate 
independent of our ignorance of anisotropy.
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A common mass scale? Plotted: Mhalo = 3 x 109 Msun

Joe Wolf et al. 2010

Bullock+ 01 
c-M relation



Bullock+ 01 
c-M relation

Notice: No trend with luminosity, as might be expected!

A common mass scale? Plotted: Mhalo = 3 x 109 Msun

Minimum mass threshold for galaxy formation?

Bullock+ 01 
c-M relation
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Much information about feedback & galaxy formation can 
be summarized with this plot. Also note similar trend to 
number abundance matching.
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Much information about feedback & galaxy formation can 
be summarized with this plot. Also note similar trend to 
number abundance matching.

L*: Efficient at 
galaxy 
formation

Inefficient at 
galaxy formation

Globulars: 
Offset from L* 
by factor of 
three

Joe Wolf et al. 2010

Ultrafaint dSphs: 
Most DM 
dominated 
systems known!
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Last plot:
Mass floor

This plot: 
Luminosity ceiling
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LCDM does well at reproducing large scale structure. However, on 
small scales, two major problems:

1. Missing Satellites Problem
(Not as bad as we thought…see Tollerud et al. 2008)



LCDM does well at reproducing large scale structure. However, on 
small scales, two major problems:

1. Missing Satellites Problem
(Not as bad as we thought…see Tollerud et al. 2008)

2. LCDM simulations predict cuspy inner slopes.
Observations strongly prefer cores.

Solution? Involve messy baryonic physics…and/or look at the most 
dark-matter dominated galaxies.



Can the observed or potentially measurable velocity 
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Can the observed or potentially measurable velocity
dispersions tell apart a cusp vs. a core in the centers of galaxies?

No…unless priors are assumed



The next two slides are copied directly from G. Gilmore’s 2007 Ann 
Arbor presentation (slides 14 and 15)



Jeans’ equation with assumed 
isotropic velocity dispersion:
All consistent with 

cores (similar results
from other analyses)

Need different technique at large radii, e.g. full velocity distribution function modelling.. 
And understand tides.

Derived mass density profiles:

CDM predicts slope of 
-1.3 at 1% of virial radius
and asymptotes to -1
(Diemand et al. 04)



Conclusion two:
 High-quality kinematic data exist
 Jeans’ analyses  prefers cored mass profiles
 Mass-anisotropy degeneracy allows cusps
 Substructure, dynamical friction  prefers cores
 Equilibrium assumption is valid inside optical radius
 More sophisticated DF analyses underway

 C ores  a lw ays  preferred, but not a lw ays  
required

 C entra l dens ities  a lw ays  s im ilar and low
 C ons is tent res ults  from ava ilable DF 

ana lys es

 Extending analysis to lower luminosity systems 
difficult due to small number of stars 

 Integrate mass profile to enclosed mass:
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Forcing isotropy: 4 of the 8 classical dSphs show no preference for 
either cores or cusps, and Sculptor strongly prefers a cusp.
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Can a common cored halo fit the data?
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Can a common cored halo fit the data?



   Wolf et al. 2010 (arXiv:0908.2995)
- Knowing M1/2 accurately without knowledge of anisotropy 
gives new constraints for galaxy formation theories to match
- Future simulations must be able to reproduce these results
- Inner slopes of dSphs c annot be determined with only 
LOS kinematics.
- Jeans  modeling  w / is otropy does  not always 
prefer c ores
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