Density profiles of MW dwarf spheroidals - cusp vs core

Joelfest

August 16, 2010

Santa Cruz, CA

Team Irvine:

Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud

KIPAC: Louie Haverford: Beth WillmanOCIW: Josh Simon

ale: Marla Geha

Ricardo Munoz

Heigh Ho...

Collaborators

Outline

1. A new mass estimator: accurate without knowledge of anisotropy/beta

2. Applications of new mass determinations for MW dSphs

 The skinny on slope determinations: cusp vs. core

Many gas-poor dwarf galaxies have a significant, usually dominant hot component. They are dispersion supported, not rotation supported.

Consider a spherical, dispersion supported system whose stars are collisionless and are in equilibrium. Let us consider the Jeans Equation:

$$\underset{\text{Equation}}{\text{Jeans}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

$$\underset{\text{Equation}}{^{\text{Jeans}}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

Mass Density (6 parameters)

$$\rho(r) = \frac{\rho_s e^{-r/r_{cut}}}{(r/r_s)^c [1 + (r/r_s)^a]^{(b-c)/a}}$$

$$\underset{\text{Equation}}{^{\text{Jeans}}} r \frac{d(\rho_{\star} \sigma_r^2)}{dr} = \frac{-GM(r)}{r} \rho_{\star}(r) - 2\beta(r)\rho_{\star} \sigma_r^2$$

Velocity Anisotropy (3 parameters)

$$\beta(r) = (\beta_{\infty} - \beta_0) \frac{r^2}{r_{\beta}^2 + r^2} + \beta_0$$

Mass Density (6 parameters)

$$\rho(r) = \frac{\rho_s e^{-r/r_{cut}}}{(r/r_s)^c [1 + (r/r_s)^a]^{(b-c)/a}}$$

Using a Gaussian PDF for the observed stellar velocities, we marginalize over all free parameters (including photometric uncertainties) using a Markov Chain Monte Carlo (MCMC).

Thought Experiment

Given the following kinematics...

Projected (On Sky) Radius

Walker et al. 2007, ApJ

Thought Experiment

Given the following kinematics, will you derive a better constraint on mass enclosed within: a) $0.5 * r_{1/2}$ b) $r_{1/2}$ c) $1.5 * r_{1/2}$

Where $r_{1/2}$ is the derived 3D deprojected half-light radius of the system.

(The sphere within the sphere containing half the light).

Projected (On Sky) Radius

Walker et al. 2007, ApJ

Hmm...

<u>Confidence Intervals:</u> Cyan: 68% Purple: 95%

Joe Wolf et al., 2010

Hmm...

It turns out that the mass is best constrained within $r_{1/2}$, and despite the given data, is less constrained for $r < r_{1/2}$ than $r > r_{1/2}$.

Confidence Intervals: Cyan: 68% Purple: 95%

Anisotrwhat?

Center of system:

Observed dispersion is radial

Anisotrwhat?

Center of system:

Observed dispersion is radial

Anisotrwhat?

Mass-anisotropy degeneracy has effectively been terminated at r_{1/2}:

Derived equation under several simplifications:

$$M_{_{1/2}} = 3 \ G^{-1} r_{_{1/2}} \langle \sigma_{los}^2 \rangle$$

Mass-anisotropy degeneracy has effectively been terminated at r_{1/2}:

Derived equation under several simplifications:

$$M_{_{1/2}} = 3 G^{-1} r_{_{1/2}} \langle \sigma_{los}^2 \rangle$$

 $\frac{1/2}{2} \simeq 930$ $\frac{1}{\mathrm{km}^2 \mathrm{s}^{-2}}$

Wait a second...

Isn't this just the scalar virial theorem (SVT)?

$$M_{_{1/2}} = 3 G^{-1} r_{_{1/2}} \langle \sigma_{los}^2 \rangle$$

Nope! The SVT only gives you limits on the total mass of a system.

This formula yields the mass within $r_{1/2}$, the 3D deprojected half-light radius, and is accurate independent of our ignorance of anisotropy.

Mass Errors: Origins

Mass Errors: Origins

Mass Errors: 300 stars

Mass Errors: 600 stars

Mass Errors: 1200 stars

Mass Errors: 2400 stars

Outline

1. A new mass estimator: accurate without knowledge of anisotropy/beta

2. Applications of new mass determinations for MW dSphs

 The skinny on slope determinations: cusp vs. core

A common mass scale? $M(<300)\sim 10^7 M_{sun} \rightarrow M_{halo}\sim 10^9 M_{sun}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

A common mass scale? $M(<300)\sim 10^7 M_{sun} \rightarrow M_{halo}\sim 10^9 M_{sun}$

Strigari, Bullock, Kaplinghat, Simon, Geha, Willman, Walker 2008, Nature

Joe Wolf et al. 2010

A common mass scale? Plotted: $M_{halo} = 3 \times 10^9 M_{sun}$

Joe Wolf et al. 2010

A common mass scale? Plotted: $M_{halo} = 3 \times 10^9 M_{sun}$ Minimum mass threshold for galaxy formation? 10⁸ 10⁸ $M_{holo}/M_{\odot} =$ Bullock+ 01 3x10¹¹ 3x10¹⁰ c-M relation 3x10⁹ 3x10⁸ 3x10⁷ 10⁷ 10⁷ M_{1/2} [M_©] 10⁶ 10⁶ 10^{5.5}<L/L_☉<10^{7.3} dSph ■ 10^{5.5}<L/L_o<10^{7.3} dSph 10^{4.0}<L/L_☉<10^{5.5} dSph 10^{4.0}<L/L_☉<10^{5.5} dSph 10⁵ 10⁵ 10^{2.3}<L/L_o<10^{4.0} dSph 10^{2.3}<L/L_o<10^{4.0} dSph 100 1000 100 1000 Mean 3D Half-light Radius [pc] Mean 3D Half-light Radius [pc]

Notice: No trend with luminosity, as might be expected! Joe Wo

Joe Wolf et al., in prep

Much information about feedback & galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Joe Wolf et al. 2010

Much information about feedback & galaxy formation can be summarized with this plot. Also note similar trend to number abundance matching.

Last plot: Mass floor

This plot: Luminosity ceiling

Joe Wolf et al. 2010

Outline

1. A new mass estimator: accurate without knowledge of anisotropy/beta

2. Applications of new mass determinations for MW dSphs

 The skinny on slope determinations: cusp vs. core

LCDM does well at reproducing large scale structure. However, on small scales, two major problems:

1. Missing Satellites Problem (Not as bad as we thought...see Tollerud et al. 2008)

LCDM does well at reproducing large scale structure. However, on small scales, two major problems:

1. Missing Satellites Problem (Not as bad as we thought...see Tolleru<u>d et al. 2008)</u>

2. LCDM simulations predict cuspy inner slopes. Observations strongly prefer cores.

Solution? Involve messy baryonic physics...and/or look at the most dark-matter dominated galaxies.

Can the observed or potentially measurable velocity dispersions tell apart a cusp vs. a core in the centers of galaxies?

Can the observed or potentially measurable velocity dispersions tell apart a cusp vs. a core in the centers of galaxies?

No...

Can the observed or potentially measurable velocity dispersions tell apart a cusp vs. a core in the centers of galaxies?

No...unless priors are assumed

The next two slides are copied directly from G. Gilmore's 2007 Ann Arbor presentation (slides 14 and 15)

Derived mass density profiles:

Jeans' equation with assumed isotropic velocity dispersion: 10° All consistent with cores (similar results from other analyses) 10^{-1} $\rho~({\rm M}_\odot~{\rm pc}^{-3}$ Ursa Minor Draco 10^{-2} LeoII LeoI CDM predicts slope of Carina -1.3 at 1% of virial radius - Sextans and asymptotes to -1 1/r 10^{-3} (Diemand et al. 04) 10^{-1} 10^{0} r (kpc)

Need different technique at large radii, e.g. full velocity distribution function modelling.. And understand tides.

Conclusion two:

- High-quality kinematic data exist
- Jeans' analyses → prefers cored mass profiles
- Mass-anisotropy degeneracy <u>allows</u> cusps
- Substructure, dynamical friction → prefers cores
- Equilibrium assumption is valid inside optical radius
- More sophisticated DF analyses underway
- Cores always preferred, but <u>not</u> always required
- Central densities always similar and low
- Consistent results from available DF analyses
- Extending analysis to lower luminosity systems difficult due to small number of stars
- Integrate mass profile to enclosed mass:

Story Time: A New Ending

Forcing isotropy: 4 of the 8 classical dSphs show no preference for either cores or cusps, and Sculptor strongly prefers a cusp.

Joe Wolf et al., in prep

When assuming isotropy, "cores always preferred"

Story Time: A New Ending

Can a common cored halo fit the data?

Joe Wolf et al., in prep

Story Time: A New Ending

Can a common cored halo fit the data?

Joe Wolf et al., in prep

Wolf et al. 2010 (arXiv:0908.2995)

- Knowing $M_{1/2}$ accurately without knowledge of anisotropy gives new constraints for galaxy formation theories to match
- Future simulations must be able to reproduce these results
- Inner slopes of dSphs cannot be determined with only LOS kinematics.
- Jeans modeling w/isotropy does not *always* prefer cores