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<> Dwarf spheroidals (dSphs) challenge our understanding
of galaxy formation and evolution because:

* dSphs are gas poor and have few stars (Mateo 1998)

* found in galaxy clusters and groups (rergusson & Binggeli 1994)

* the most dark matter dominated galaxies (M/L™ 30-100)

* the ultra-faint dwarf galaxies have L™ 1000 Lsun
(Willman et al. 2005, Zucker et al. 2006;Belokurov et al.2009; Walker et al.2008)




We need a mechanism to separate & stars from DM
to explain high M/L ratio

v’ Gas photoheated during reionization or blown out by
feedback, but:
* few signatures of reionization in dSphs (Gallagher et al. 2003)
» difficulties explaining the morphology

v Tidal shocking can convert a disk of stars into a spheroid
but requires:

* ram pressure to remove the gas (Mayer et al. 2007)
* that dwarfs orbit close to Milky Way or Andromeda




A small dwarf orbiting inside a larger system
(D’Onghia et al., 2009, Nature, 460, 605)

The stripping of stars is caused by a gravitational process:
“Resonant Stripping”: stars and gas in the victim are removed by a
resonance between the of its disk and the
of its orbit around the perturber.
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Surprising outcome: baryons at the bottom of the potential well are
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: “"Resonant Stripping” alters the M/L ratio in galaxies because
stars and gas are removed more efficiently than the dark matter




Resonant Stripping

Tidal Stripping
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Nearly Prograde Encounter Nearly Retrograde Encounter
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Evolution of mass surface density profile
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D’Onghia et al., 2009, Nature, 460, 605




Evolution of kinematic and structural properties
: A Re/Ro |
c/a

t [billion years]

D’Onghia et al., 2009, Nature, 460, 605




v' “Resonant Stripping”should be visible in situ in groups of
dwarfs nearby.

v Many dSphs should be found in groups of dwarfs along
with detectable stellar tails and shells.
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NOTE: Resonant Stripping depends on a combination of
the rotation curve and orbital parameters
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TIDAL RESONANCES DURING MAJOR MERGERS

v" The tails and bridges of stars in major mergers are caused by a
tidal resonance (Toomre & Toomre 1972)

v" Simulations have shown that of stars are removed
* during major mergers
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Limits of

v' for angular frequency=0 m

Tidal near-resonance > Impulse Approximation
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Tidal near-resonance - Adiabatic Invariant
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Perturber
on parabolic orbit
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is more efficient

than the impulse approximation
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m/M=100

10
b/rh

The efficiency depends on:
mass ratio (m/M) and
impact parameter b




Comparison between the quasi-resonance theory and simulations
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D’Onghia et al. 2010, in prep




The energy and angular momentum distributions match |
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Retrograde Orbit
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Non Coplanar Orbit
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Parabolic Orbit
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The Magellanic Stream as the product of an
LMC + SMC tidal encounter
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v' Interactions between dwarf galaxies in small groups excite
a resonant response: "Resonant Stripping” that rapidly
transforms disks into dSphs.

v’ Resonant stripping is a gravitational process

that removes gas & stars in a disk but affects less DM
and can be described by tidal Quasi-Resonance Theory

4 -- rotational velocity of the stars in data

-- subhalo angular momentum in cosmological
simulations and if they are preferentially
refrograde




