

Theoretical studies and hydrodynamical cosmological simulations* have shown that galaxies in dark matter haloes of M~ $10^{12} M_{\odot}$ at z~2 are typically Stream-Fed-Galaxies.

125 Mpc/h

100 kpc

¹⁵⁰ Density

-100

-150

Dekel, Sari & Ceverino (2009) propose a scenario where the formation of Stream-Fed-Galaxies is driven by cold streams, disk instability and the growth of a central spheroid.

> *Dekel & Birnboim (2006), Keres et al. (2005)

High-z Clumpy Disks

Kinematics consistent with rotating disk with V~200 km/s and σ ~50 km/s *

Star formation rates ~ $100M_{\odot}/yr$ mainly occurring in the clumps*

Several giant clumps of ~1kpc size and M~ $10^9 M_{\odot}$ *

*Genzel et al. (2006), Forster-Schreiber et al. (2006), Elmegreen & Elmegreen (2005)

GAS-RICH GALAXIES (i.e. Dekel, Sari & Ceverino 2009)

$$\dot{M}_{\rm disk} \sim (1 - \gamma) \dot{M}_{\rm acc} - \dot{M}_{\rm evac}$$

 γ = clumpiness parameter of the incoming baryons $\dot{M}_{\rm acc}$ = baryon accretion rate (fixed by cosmology*) $\dot{M}_{\rm evac}$ = disk mass evacuation rate by clump migration

N.B. the evacuation timescale depends on the clumpiness of the disk $\alpha M_{\rm disk} = M_{\rm clumpy-disk}$

*Neistein et al. (2006), Fakhouri et al. (2010)

DISK INSTABILITY

A rotating gaseous disk becomes unstable to axisymmetric modes once the local gravity, Σ , overcomes both differential rotation, Ω , and pressure, σ .

TOOMRE'S CRITERION*:
$$Q \propto \frac{\Omega \sigma}{\Sigma} < Q_{\rm crit} \sim 1$$

Gas-rich disks fragment into big clumps due to gravitational instability^{**}.

The encounters between these clumps is one of the mechanisms through which the disk maintains itself in the marginally unstable state, $Q \sim Q_{crit}$: disk instability is a self-regulating process.

*Toomre (1964), **Elmegreen & Elmegreen (2005), Bournaud et al. (2008)

How does the disk evolve towards z~0?

What is the impact of the developing (hotter) stellar component?

Towards Stellar Dominated Galaxies (an analytical model)

(it requires a model for the evolution of $\sigma_{
m star}(t)$)

...and stars actively participate in the disk evolution (it requires different treatment for the migration of stars and gas)

Evolution of a gas+stars disk PROGRESS **Assumptions:** $Q \to Q_{g+s}(\Sigma_g, \Sigma_s, \sigma_g, \sigma_s, \Omega) \neq Q_g + Q_s^*$ $Q_{g+s} = Q_{crit}$ (the disk regulates itself to be marginally unstable) $M_{\rm gas, evac} = \zeta_{\rm gas, evac} M_{\rm evac}$ (gas and stars can migrate $M_{\rm stars,evac} = \zeta_{\rm stars,evac} M_{\rm evac}$ on different timescales) $\sigma_{\rm s}^2 = \sigma_{\rm s,old+young}^2 + \sigma_{\rm s,heat}^2$ **Results:** $\delta = \delta(t)$ (the evolution of the disk) $\sigma_{\rm g} = \sigma_{\rm g}(\Sigma_{\rm g}, \Sigma_{\rm s}, \sigma_{\rm s}, Q_{\rm crit})$ (the gas velocity dispersion responds to the evolution of the disk) *Jog & Solomon (1984), Rafikov (2001)

 $\sigma_{\rm g} \sim 10$ --> $\sigma_{\rm g}$ of the order of thermal motions ---> gas cannot cool further-->instability cannot continue!!!

The gas+stars treatment allows disk stabilization (already at z~1)

 $\sigma_{\rm g} \sim 10$ --> $\sigma_{\rm g}$ of the order of thermal motions ---> gas cannot cool further-->instability cannot continue!!!

The gas+stars treatment allows disk stabilization (already at z~1)

Open Questions

What is the real mechanism that drives the turbulence? Is it only gravity? Or does feedback play an important role?

> To what extent can the disk be assumed at a marginally unstable state at any time?

Can a disk have alternate phases of stability and instability?

We intend to further develop the analytical model in synergy with results from hydrodynamical numerical simulations*.

