Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Mia S. Bovill

with Massimo Ricotti

University of Maryland

The Smallest Galaxies

Minihalos DO NOT initiate gas condensation by Lyman-α cooling.

 $T_{vir} < 10,000 \text{ K}$ or $M_{dm} < 10^8 \text{ M}_{\odot}$ or $v_{max} < 20 \text{ km/s}$

They are extremely sensitive to feedback effects and will not form stars unless they can form and retain significant amount of H₂.

H₂ photo-dissociation:Negative feedback Suppress galaxy formation

The Smallest Galaxies

Minihalos DO NOT initiate gas condensation by Lyman-α cooling.

 $T_{vir} < 10,000 \text{ K}$ or $M_{dm} < 10^8 \text{ M}_{\odot}$ or $v_{max} < 20 \text{ km/s}$

They are extremely sensitive to feedback effects and will not form stars unless they can form a significant amount of H₂.

What is a Fossil?

Hybrid Initial Conditions

The final pre-reionization output is transformed in a 1 Mpc³ box of particles.

We duplicate this box, adding perturbations to account for density variations with l > 1 Mpc.

Ricotti et al (2002a,2002b)

Each HR particle in the resulting N-body simulation represents a pre-reionization halo.

Unique IDs allow us to retrieve the stellar properties at z = 0 of halos > 3 x 10⁶ M_{\odot}.

Simulations

Run with Gadget 2 (Springel, 2005) on the University of Maryland HPCC Deepthought and analyzed with AHF (Knollmann & Knebe, 2009).

Run C	Run D	
$box = 50^3 Mpc^3 h^{-3}$	$box = 50^3 Mpc^3 h^{-3}$	
PR outputs used = 8.3	PR outputs used = 8.3, 10.2, 12, 14	
$z_{init} = 8.3$	$z_{init} = 10.2$	
$m_{high res} = 3 \times 10^5 - 3 \times 10^8 M_{\odot}$ $m_{min} = 3 \times 10^5 M_{\odot}$	$m_{high res} = 3 \times 10^5 - 3 \times 10^8 M_{\odot}$ $m_{min} = 3 \times 10^5 M_{\odot}$	
$\epsilon = 1 \text{ kpc}$	$\varepsilon = 1 \text{ kpc}$	
MW.1 = $1.82 \times 10^{12} M_{\odot}$	$MW.2 = 0.87 \times 10^{12} M_{\odot}$ $MW.3 = 1.32 \times 10^{12} M_{\odot}$	

The Ultra-Faint Dwarfs as Fossils of the First Galaxies

Bovill & Ricotti (2009, 2010a-in prep)

The Ultra-Faint Dwarfs as Fossils of the First Galaxies

Bovill & Ricotti (2009, 2010a-in prep)

Undetected dwarfs have higher M/L but the *same* velocity dispersion! Match of ultra-faints in M/L is independent of mass estimator. Undetected dwarfs would have [Fe/H] < -3 [Fe/H] of the "green" dwarfs are consistent with a primordial fossil origin.

Observational Sample

An observed fossil dwarf is defined as:

~ dSph (no gas, diffuse, roughly spherical stellar population)

- \sim SFH dominated by an old, metal poor population
- $\sim v_{max} \,{<}\,20$ km s^{-1} : $\sigma_{\star} \,{<}\,{\sim}\,10\text{--}15$ km s^{-1}

And VI And I Antila Soulptor And II <u>Octus</u> Sextans And III Draco <u>Tusena</u> And V <u>KKR 25</u> Urse Minor Phoenix **True fossils**

Classical dwarfs: fossils as defined in Ricotti & Gnedin (2005) with $L_V < 10^6 L_{\odot}$.

Ultra-faint dwarfs: R > 50 kpc whose stellar properties are consistent with our true fossils.

	R < 50 kpc	R > 50 kpc	L>10 ⁶ L _o
tidal	Ursa Major II, Segue I & II, Willman I	Pisces II	
non-tidal	Coma Ber. 🥊	Bootes I & II, CVn I & II, Hercules, Leo IV, Leo T, Ursa Major I	\widehat{E} 10
			1 = 10 100 10 ³ R (kpc)

Gnedin & Kravtsov (2006), MSB & Ricotti (2010a,in-prep)

Fossil Distributions

Bovill & Ricotti (2010b-in prep)

MW.2 and MW.3 from Run D with SDSS detection limits applied (Walsh et al, 2009)

"Primordial" Luminosity Function

Non-fossils are any subhalo which was able to form stars after reionization. *All* of the non-fossils contain a primordial population.

CAUTION: Since these objects may have formed stars after reionization, the z=0 luminosity function will shift to the right with a lower slope relative to the primordial one.

60 50 kpc < R40 R < 100 kpc $N (I_v > I_v)$ 20 non-fossils fossils 100 1000 105 108 107 108 104 $L_v (L_{\odot})$

"Primordial" Luminosity Function

Fossils have undergone no significant baryonic evolution after reionization.

Unlike the non-fossils, their primordial luminosities directly determine the z=0 luminosity function.

"Primordial" Luminosity Function

"Primordial" Luminosity Function

Includes all known dwarfs with R > 50 kpc.

Ultra-faint sample is corrected for SDSS sky coverage and completeness (Walsh et al, 2009)

Sample is complete to the right of the dashed lines.

"Primordial" Luminosity Function

Which one is not like the others?

Fluffing the Non-Fossils

Stars initially form at the center of a dark matter halo.

Ghost Halos

Kinetic energy from the repeated collisions heats the primordial stellar population.

Primordial stars become a diffuse "ghost halo" around a dIrr which is below the SDSS detection limits.

This ghost halo will be the first to go in an interaction with another halo.

Bovill & Ricotti (2010b-in prep)

Take Home Points

• The stellar properties of the ultra-faint dwarfs are consistent with those of a primordial population in size, luminosity, velocity dispersion, M/L and [Fe/H].

• In the primordial model there is an undetected population of even dimmer dwarfs with higher M/L, [Fe/H] of -3 or lower, and the *same* σ_* as the ultra-faints.

• True fossils in our simulation are able to reproduce the distribution of fossil satellites around the Milky Way and there are no true fossils with $L_V > 10^6 L_{\odot}$.

- We overproduce subhalos with $L_V\!>10^4\text{--}10^5~L_\odot$ at all radii by as much as an order of magnitude.

• The most effective way to lower the number of luminous subhalos while preserving the fossil population is to assume that the non-fossils (dIrr and dE) near the MW lost > 99% of their primordial populations.

• The primordial population of isolated non-fossils would be retained in a diffuse "ghost halo" of $\tau > 12$ Gyr, [Fe/H] < -2 stars.

