Models of Black Holes and Black Box Models

Andrew Benson

California Institute of Technology

Overview

Models of black hole spins and jet power

- Crucial for AGN feedback models
- Useful fitting formulae
- New model of galaxy formation
 - Emphasis on extensibility and flexibility

Black Holes in Galaxy Formation

Blandford-Znajek Process

Thorne (1994)

AGN feedback

 Key process in galaxy formation

Modeling

- Accretion system
- Black hole
- Jets/Outflows
- Feedback

Modeling Black Hole Spin/Jets

- AJB & Babul (2009)
 - Model of advection dominated accretion flow (ADAF)
 - Fitting formulae to Narayan & Yi numerical solutions
 - Estimate flow properties in Kerr metric
 - Blandford-Znajek etc. estimate of jet power
 - From black hole spin and disk rotation
 - Calculate torques due to power extracted from hole

Spin Up of Black Holes

- Spin up by angular momentum of accreted matter
- Spin down by torques that drive jets

 Possibility of equilibrium spin

August 2010, Santa Cruz

Equilibrium Spin

Black Hole Jet Efficiencies

Disk and black hole contribute High efficiencies for high spins

August 2010, Santa Cruz

Black Hole Spin Distribution

Black Holes Summary

- Jet power of black holes is a crucial ingredient for AGN feedback models
 - AJB & Babul (2009) provides simple fitting formula for:
 - ADAF structure
 - Jet power
 - Spin-up/down rate
 - Predicts equilibrium spin *j*~0.8 0.95
 - Jet efficiency at equilibrium η ~15%

A New Semi-Analytic Model

- Why?
 - Adding in new features (e.g. self-consistent reionization, noninstantaneous recycling, new star formation rules) should be easy
 - Permit user to focus on physics
- How?
 - Create a code which is modular by design, isolating assumptions so that they don't have consequences throughout the code.

GALACTICUS

- Freely available for anyone to use
- Modular design
 - Each function can have multiple implementations, selected by input parameter.
 - "Node" can have arbitrary number of components (e.g. DM halo, disk, spheroid), all with multiple implementations
- Combination of smooth (ODE) evolution and instantaneous events (e.g. mergers)

Modularity

New implementation of function easily added:

- Write a module containing the function
- Add directives indicating that this function is for disk star formation timescale calculations
- Recompile build system automatically finds this new module and works out how to compile it into the code

Modularity

- Modules are self-contained and independent
- Self-initializing and recursive
- For example deterministic halo spins:
 - Request spin of halo
 - Module reads in parameters of model, initializes
 - Needs spins of progenitor halos, so calls itself for those nodes...
 - ...which call the same routine for their progenitors....

Node Components

- Component could be, e.g. disk (exponential)
- Stores various types of data:
 - Properties evolved within ODE system
 - Data internal data, not evolved
 - Histories records of past/future history (e.g. star formation history)
- Allowance for multiple components of each type (coming soon....)

Node Components

• Defining a component:

- Set of ODEs giving rates of change of properties (can access properties of other components/nodes as needed)
- Responses to events (merging, becoming satellite etc.)
- Specify properties to be output

Node Evolution

- Code repeatedly walks tree finds nodes that it can evolve:
 - Cannot evolve if still have children
 - Can't evolve beyond their satellites
 - Limit on time step
 - Arbitrary other factors can be included
- Evolve those nodes forward in time
- Stops when no more nodes to evolve

Node Evolution

- All component properties fed into ODE solver
- Evaluate derivatives evolve forward in time
- No need for fixed timesteps or analytic solutions
 - Makes implementing, for example, Kennicutt-Schmidt law trivial (just add new star formation timescale function)
- Evolution can be interrupted as needed (e.g. when galaxy merges)

Node Evolution

- Component creation:
 - Nodes begin with only basic component (mass, time)
 - If accretion from IGM occurs, stop and create a hot halo component
 - If cooling occurs, stop and create a disk component
 - Components can be destroyed as needed also

Advantages

- Modularity makes it highly flexible:
 - Add new star formation rule in 5 minutes
 - Change in cooling model confined to few modules which compute cooling time and rate
- Unified ODE solver makes new features simple:
 - Time stepping handled automatically
 - No need for analytic solutions
 - Implemented noninstantaneous recycling in one afternoon rather than two months....

Current Feature List

Components

- Dark matter profile [isothermal/NFW]
- Hot halo
- Disk [exponential]
- Spheroid [Hernquist]
- Black holes (grow via Bondi-Hoyle accretion)
- plus components that track things such as spin, merging time etc.

Current Feature List

• Physics (cont.):

- Disk instabilities
- Black hole merging
- AGN feedback

Stellar population synthesis (with arbitrary IMF)

GALACTICUS

http://sites.google.com/site/galacticusmodel/

Conclusions

AGN feedback/Black hole models

- AJB & Babul (2009) provides fitting formula for:
 - ADAF structure
 - Black hole jet power and spin
- GALACTICUS model
 - Free and open source
 - Extensible/flexible
 - Try it!