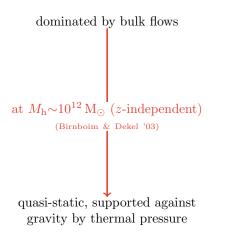
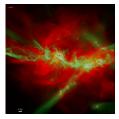
Cooling Flow Solutions and the Onset of Pressure Support in Galaxy-Scale Halos

Jonathan Stern


Northwestern University


August 6, 2019

Collaborators:

D. Fielding (CCA), C.-A. Faucher-Giguère (Northwestern), E. Quataert (UC Berkeley),Z. Hafen (Northwestern), A. Gurvich (Northwestern), L. Byrne (Northwestern),D. Anglés-Alcázar (CCA), and the FIRE team

The Volume-Filling Gas Phase in Galaxy-Scale Halos

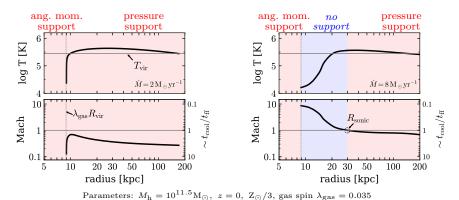
 $M_{\rm halo} = 10^{11.5} \; {\rm M}_{\odot}, \, z = 2$

$$M_{\rm halo} = 10^{12} \,{\rm M_{\odot}}, \, z \sim 0$$

FIRE-2 simulations: Hopkins et al. (2018)

The onset of pressure support in galaxy-scale halos according to...

- **(**) analytic cooling flow theory
- **2** idealized CGM simulations
- 0 the *FIRE* cosmological simulations
- observations

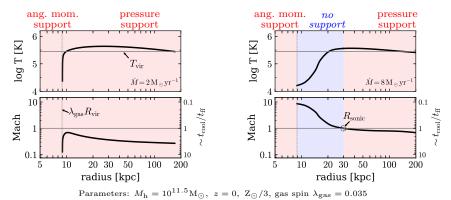

The onset of pressure support in galaxy-scale halos according to...

- analytic cooling flow theory
- 2 idealized CGM simulations
- the *FIRE* cosmological simulations
 result: coincides with bursty SF → steady SF transition

observations

Cooling Flow Solutions for the Hot CGM

- Steady-state solutions for radiating gas in const. potential (Mathews & Bregman '78)
- Two classes of solutions separated by a critical inflow rate \dot{M}_{crit} :

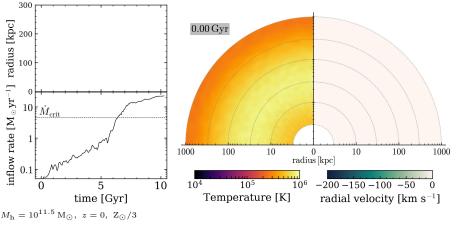

 $\dot{M} < \dot{M}_{
m crit}$

Stern et al. (in prep.)

Cooling Flow Solutions for the Hot CGM

- Steady-state solutions for radiating gas in const. potential (Mathews & Bregman '78)
- Two classes of solutions separated by a critical inflow rate \dot{M}_{crit} :

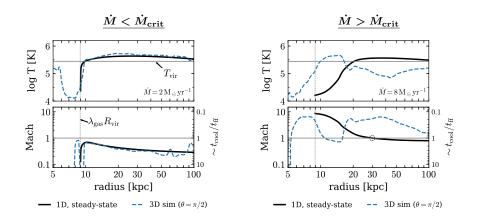
$$\dot{M} < \dot{M}_{\rm crit}$$


Stern et al. (in prep.)

 $\dot{M}_{\rm crit}$ derived from $R_{\rm sonic} = \lambda_{\rm gas} R_{\rm vir}$

J. Stern (Northwestern)

August 6, 2019 4 / 16


A Critical Inflow Rate in Idealized 3D Simulations

Stern et al. (in prep.); sims based on Fielding et al. (2017)

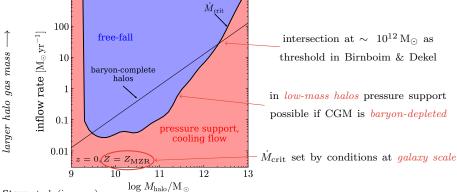
when inflow rate exceeds M_{crit} hot CGM collapses to a cool supersonic flow

Cooling Flow Solutions vs. Idealized CGM Simulations

realized in 3D sims

not realized in 3D sims

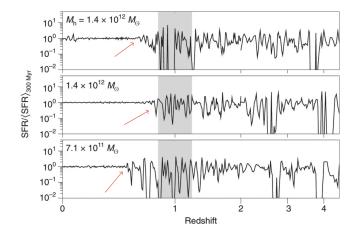
Stern et al. (in prep.)


J. Stern (Northwestern)

Reformulation of Condition for CGM Pressure Support

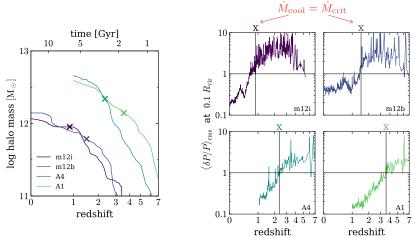
- $\dot{M} < \dot{M}_{\rm crit}$: pressure support
- $\dot{M} > \dot{M}_{\text{crit}}$: free-fall

1000


 $\dot{M}_{\rm crit}$ is the maximum accretion rate of the 'hot' mode

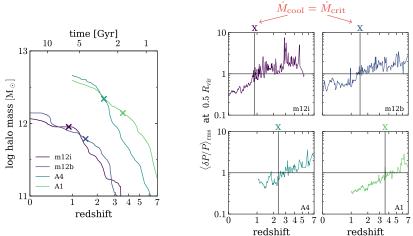
Stern et al. (in prep.)

Onset of pressure support in the FIRE cosmological simulations


A Puzzle in the FIRE 'Zoom-in' Simulations

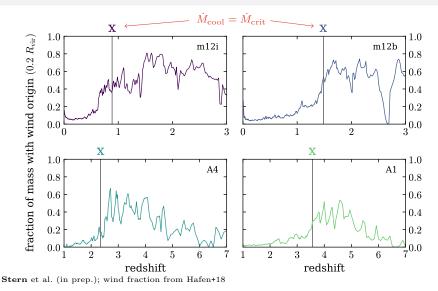
Faucher-Giguère (2018); see also Muratov et al. (2015)

Sharp transition between bursty and steady star formation

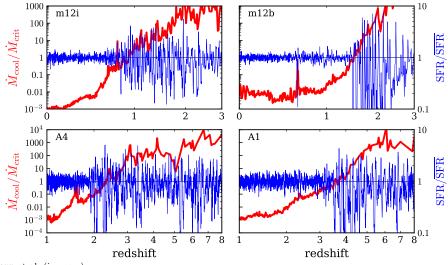

Onset of Pressure Support in FIRE using $M_{\rm crit}$

Stern et al. (in prep.)

when $\dot{M}_{\rm cool} = \dot{M}_{\rm crit}$ halo pressure becomes **uniform**

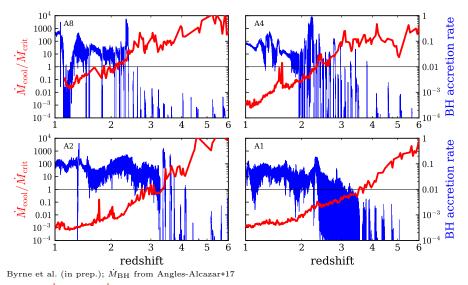

Onset of Pressure Support in FIRE using $M_{\rm crit}$

Stern et al. (in prep.)


when $\dot{M}_{\rm cool} = \dot{M}_{\rm crit}$ halo pressure becomes **uniform**

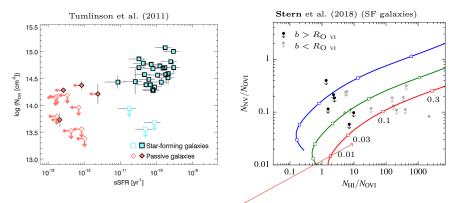
Pressure Support versus CGM composition

CGM wind content drops after onset of pressure support


Pressure Support versus the Star Formation Rate

Stern et al. (in prep.)

 $\dot{M}_{\rm cool} = \dot{M}_{\rm crit}$ coincides with transition to steady SFR


Pressure Support versus Black Hole Growth

 $\dot{M}_{\rm cool} = \dot{M}_{\rm crit}$ coincides with onset of significant BH growth

Onset of pressure support in observations

Pressure Support in the Halos of Blue and Red Galaxies

line ratios consistent with low gas pressure compared to virialized halo

⇒ OVI dichotomy can be explained with free-falling CGM around blue galaxies, pressure-supported CGM around red galaxies

Summary

0 New derivation of condition for pressure support using cooling flows

2 Identified onset of pressure support in *FIRE*. Coincides with

- transition from *bursty* to *steady* star formation
- drop in CGM wind content
- onset of BH growth

Observed circumgalactic O VI dichotomy consistent with:
 blue galaxies → before onset of pressure support
 red galaxies → after onset of pressure support