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The Volume-Filling Gas Phase in Galaxy-Scale Halos

dominated by bulk flows

quasi-static, supported against
gravity by thermal pressure

at Mh∼1012 M� (z-independent)
(Birnboim & Dekel ’03)

Mhalo = 1011.5 M�, z = 2

Mhalo = 1012 M�, z ∼ 0

FIRE-2 simulations: Hopkins et al. (2018)
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Outline

The onset of pressure support in galaxy-scale halos according to...

1 analytic cooling flow theory

2 idealized CGM simulations

3 the FIRE cosmological simulations

result: coincides with bursty SF → steady SF transition

4 observations
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Cooling Flow Solutions for the Hot CGM

Steady-state solutions for radiating gas in const. potential (Mathews & Bregman ’78)

Two classes of solutions separated by a critical inflow rate Ṁcrit:
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Parameters: Mh = 1011.5M�, z = 0, Z�/3, gas spin λgas = 0.035

Stern et al. (in prep.)

Ṁcrit derived from Rsonic = λgasRvir
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A Critical Inflow Rate in Idealized 3D Simulations

Mh = 1011.5 M�, z = 0, Z�/3

Stern et al. (in prep.); sims based on Fielding et al. (2017)

when inflow rate exceeds Ṁcrit hot CGM collapses to a cool supersonic flow
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Cooling Flow Solutions vs. Idealized CGM Simulations
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Reformulation of Condition for CGM Pressure Support

Ṁ < Ṁcrit: pressure support

Ṁ > Ṁcrit: free-fall
} Ṁcrit is the maximum

accretion rate of the ‘hot’ mode
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Ṁcrit set by conditions at galaxy scale

Stern et al. (in prep.)
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Onset of pressure support in the

FIRE cosmological simulations
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A Puzzle in the FIRE ‘Zoom-in’ Simulations

Faucher-Giguère (2018); see also Muratov et al. (2015)

Sharp transition between bursty and steady star formation
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Onset of Pressure Support in FIRE using Ṁcrit

0 1 2 3 4 5 7

redshift

11

12

13

lo
g 

ha
lo

 m
as

s 
[M

¯
]

m12i
m12b
A4
A1

12510
time [Gyr]

0.1

1

10
x

m12i
0.1

1

10
x

m12b

0 1 2 3 4 5 7

redshift

0.1

1

10
x

A4

0 1 2 3 4 5 7

redshift

0.1

1

10
x

A1

〈 δP/
P
〉 rm

s  
at

  0
.1
R

v
ir

Stern et al. (in prep.)

Ṁcool = Ṁcrit

when Ṁcool = Ṁcrit halo pressure becomes uniform
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Onset of Pressure Support in FIRE using Ṁcrit
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Stern et al. (in prep.)

Ṁcool = Ṁcrit

when Ṁcool = Ṁcrit halo pressure becomes uniform
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Pressure Support versus CGM composition
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Stern et al. (in prep.); wind fraction from Hafen+18

Ṁcool = Ṁcrit

CGM wind content drops after onset of pressure support
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Pressure Support versus the Star Formation Rate
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Stern et al. (in prep.)

Ṁcool = Ṁcrit coincides with transition to steady SFR
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Pressure Support versus Black Hole Growth
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Byrne et al. (in prep.); ṀBH from Angles-Alcazar+17

Ṁcool = Ṁcrit coincides with onset of significant BH growth
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Onset of pressure support in observations

J. Stern (Northwestern) August 6, 2019 14 / 16



Pressure Support in the Halos of Blue and Red Galaxies

Tumlinson et al. (2011) Stern et al. (2018) (SF galaxies)

b > RO vi

b < RO vi

0.03

0.01

0.1

0.3

line ratios consistent with low gas pressure compared to virialized halo

⇒ OVI dichotomy can be explained with free-falling CGM around blue
galaxies, pressure-supported CGM around red galaxies
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Summary

1 New derivation of condition for pressure support using cooling flows

2 Identified onset of pressure support in FIRE. Coincides with

transition from bursty to steady star formation
drop in CGM wind content
onset of BH growth

3 Observed circumgalactic O vi dichotomy consistent with:
blue galaxies → before onset of pressure support
red galaxies → after onset of pressure support
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