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The Volume-Filling Gas Phase in Galaxy-Scale Halos

dominated by bulk flows

at My~102 Mg, (z-independent) Myato = 1019 Mg, 2 =2

(Birnboim & Dekel ’03)

quasi-static, su\ﬁported against
gravity by thermal pressure

Mpalo = 1012 Mg, 2 ~ 0

FIRE-2 simulations: Hopkins et al. (2018)
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Outline

The onsetl of pressure support in galaxy-scale halos according to...

@ analytic cooling flow theory

@ idealized CGM simulations

© the FIRE cosmological simulations

@ observations
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Outline

The onsetl of pressure support in galaxy-scale halos according to...

@ analytic cooling flow theory
g
@ idealized CGM simulations 5
kel
)
Z.
© the FIRE cosmological simulations <
result: coincides with bursty SF — steady SF transition
@ observations l
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Cooling Flow Solutions for the Hot CGM

@ Steady-state solutions for radiating gas in const. potential (Mathews & Bregman 78)

@ Two classes of solutions separated by a critical inflow rate Meric:
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Cooling Flow Solutions for the Hot CGM
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A Critical Inflow Rate in Idealized 3D Simulations
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Stern et al. (in prep.); sims based on Fielding et al. (2017)

when inflow rate exceeds ]\:fmt hot CGM collapses to a cool supersonic flow
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Cooling Flow Solutions vs. Idealized CGM Simulations
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Reformulation of Condition for CGM Pressure Support

® M < Myy;: pressure support } Mt is the mazimum
o M > M.y: free-fall accretion rate of the ‘hot” mode
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Onset of pressure support in the

FIRE cosmological simulations
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A Puzzle in the FIRE ‘Zoom-in’ Simulations
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Faucher-Giguere (2018); see also Muratov et al. (2015)

Sharp transition between bursty and steady star formation
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Onset of Pressure Support in FIRE using M
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Onset of Pressure Support in FIRE using M
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Pressure Support versus CGM composition

fraction of mass with wind origin (0.2 R,;,)
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Pressure Support versus the Star Formation Rate
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Mool = Myt coincides with transition to steady SFR
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Pressure Support versus Black Hole Growth
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Mool = Myt coincides with onset of significant BH growth
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Onset of pressure support in observations
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Pressure Support in the Halos of Blue and Red Galaxies

Stern et al. (2018) (SF galaxies)
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line ratios consistent with low gas pressure compared to virialized halo

= O VI dichotomy can be explained with free-falling CGM around blue
galazies, pressure-supported CGM around red galazies
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Summary

@ New derivation of condition for pressure support using cooling flows

@ Identified onset of pressure support in F/RFE. Coincides with

e transition from bursty to steady star formation
e drop in CGM wind content
e onset of BH growth

© Observed circumgalactic O VI dichotomy consistent with:
blue galaxies —  before onset of pressure support
red galaxies —  after onset of pressure support
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