
Deep Learning for Galaxies
(a progress report)

Joel Primack 

UCSC



Project MAC (the Project on Mathematics and Computation was 
launched at MIT with a $2 million grant from the Defense Advanced 
Research Projects Agency (DARPA) in 1963.  The "AI Group" 
including Marvin Minsky (the director), John McCarthy (who 
invented Lisp) and others.  The MIT Artificial Intelligence Lab was 
started in 1970.  Early leaders included Minsky and Seymour Papert.  
They were initially quite optimistic about how quickly AI would become 
practical.

https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/Lisp_programming_language


• For decades we tried to write down every possible 

rule for everyday tasks —> impossible 

• Every day tasks we consider blindingly obvious have 

been exceedingly difficult for computers.

‘Simple’ problems proved most difficult.

cat?

from “Deep Learning for Vision” lecture at CERN by Jon Shlens, Google Research - author of TensorFlow



Machine learning applied everywhere.

• The last decade has shown that if we teach computers 

to perform a task, they can perform exceedingly better.

machine translation speech recognition

face recognition time series analysis

molecular activity prediction image recognition
road hazard detection object detection 

optical character recognition motor planning

motor activity planning syntax parsing

language understanding …

face recognition for galaxies?



Good fine-grain classification.

hibiscus dahila

Both recognized as “meal”

Good generalization.

meal
Sensible errors.

snake dog

** Trained a model for whole image recognition using Inception-v3 architecture.

Examples of artificial vision in action

• fine-grain classification 

• generalization 

• sensible errors

meal



A toy model of a neuron: “perceptron”

The perceptron: a probabilistic model for information storage and organization in the brain.
F Rosenblatt (1958)

• no spikes 

• no recurrence or feedback * 

• no dynamics or state * 

• no biophysics

y = f(
X

i

wixi + b)

Simplify the neuron to a sum over weighted inputs 
and a nonlinear activation function.

f(z) = max(0, z)

Marvin Minsky 
1927-2016

Frank Rosenblatt 
1928-1971

vs.

“During the late 1950s and early 1960s … Rosenblatt and Minsky 
debated on the floors of scientific conferences the value of 
biologically inspired computation, Rosenblatt arguing that his neural 
networks could do almost anything and Minsky countering that they 
could do little.”

Web version of The Quest for Artificial Intelligence by Nils Nilsson, nicely covers Minsky 
and Rosenblatt (as well as a lot of other relevant AI material).

http://ai.stanford.edu/~nilsson/QAI/qai.pdf


During the 1960s, neural net researchers employed various methods for changing a 
network’s adjustable weights so that the entire network made appropriate output 
responses to a set of “training” inputs. For example, Frank Rosenblatt at Cornell 
adjusted weight values in the final layer of what he called the three-layer alpha-
perceptron. But what stymied us all was how to change weights in more than one layer 
of multilayer networks…. Inventive schemes were tried for making weight changes; 
none seemed to work out.
That problem was solved in the mid-1980s by the invention of a technique called “back 
propagation” (backprop for short) introduced by David Rumelhart, Geoffrey E. 
Hinton, and Ronald J. Williams.  The basic idea behind backprop is simple…. In 
response to an error in the network’s output, backprop makes small adjustments in all 
of the weights so as to reduce that error. It can be regarded as a hill-descending 
method – searching for low values of error over the landscape of weights. But rather 
than actually trying out all possible small weight changes and deciding on that set of 
them that corresponds to the steepest descent downhill, backprop uses calculus to 
precompute the best set of weight changes.

FromThe Quest for Artificial 
Intelligence by Nils Nilsson, 
Chapter 29.

See also



Large scale academic competition focused on predicting 1000 
object classes (~1.2M images).

• electric ray 

• barracuda 

• coho salmon 

• tench 

• goldfish 

• sawfish 

• smalltooth sawfish 

• guitarfish 

• stingray 

• roughtail stingray 

• ...

                     The computer vision competition:

Imagenet: A large-scale hierarchical image database 
J Deng et al (2009)

classes



History of techniques in ImageNet Challenge

Locality constrained linear coding + SVM NEC & UIUC
Fisher kernel + SVM Xerox Research Center Europe
SIFT features + LI2C Nanyang Technological Institute
SIFT features + k-Nearest Neighbors Laboratoire d'Informatique de Grenoble
Color features + canonical correlation analysis National Institute of Informatics, Tokyo

Compressed Fisher kernel + SVM Xerox Research Center Europe
SIFT bag-of-words + VQ + SVM University of Amsterdam & University of 

TrentoSIFT + ? ISI Lab, Tokyo University

Deep convolutional neural network University of Toronto
Discriminatively trained DPMs University of Oxford
Fisher-based SIFT features + SVM ISI Lab, Tokyo University

ImageNet 2010

ImageNet 2011

ImageNet 2012



Advances in Neural Information Processing Systems 25 (NIPS 2012) [PDF]

https://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


• Multi-layer perceptron trained with back-propagation 
are ideas known since the 1980’s.

Deep convolutional neural networks

ImageNet Classification with Deep Convolutional Neural Networks 
A Krizhevsky I Sutskever, G Hinton (2012) 

Backpropagation applied to handwritten zip code recognition
Y LeCun et al (1990)

The success of deep learning in the past 5 years is 
due to more powerful computers (GPUs) and better 
code.

•



Sander Dieleman used a deep learning code to predict Galaxy Zoo nearby galaxy 
image classifications with high accuracy, winning the 2014 Kaggle competition

Dieleman, Willett, Dambre 2015, Rotation-invariant convolutional neural networks for 
galaxy morphology prediction, MNRAS 

http://benanne.github.io/2014/04/05/galaxy-zoo.html

Krizhevsky-style	diagram	of	the	architecture	of	the	best	performing	network.

We present a deep neural network model for galaxy morphology classification which 
exploits translational and rotational symmetry. For images with high agreement among 
the Galaxy Zoo participants, our model is able to reproduce their consensus with near-
perfect accuracy (>99 per cent) for most questions.

The Galaxy Zoo 2 decision tree. Reproduced from fig.1 in 
Willett et al. (2013). 

http://benanne.github.io/2014/04/05/galaxy-zoo.html


Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images
H-C et al. 2015, Catalog of  Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

In this work, we mimic human perception with deep learning using convolutional neural networks 
(ConvNets). The ConvNet is trained to reproduce the CANDELS visual morphological classification 
based on the efforts of  65 individual classifiers who contributed to the visual inspection of  all of  the 
galaxies in the GOODS-S field.  It was then applied to the other four CANDELS fields.  The galaxy 
classification data was then released to the astronomical community. 

ConvNets have been proven to perform extremely well in
image recognition tasks. For example, they have achieved an
error rate of 0.23% for the MNIST database, which is a
collection of manuscript numbers considered as a standard
test for all new machine learning algorithms (Ciresan
et al. 2012). When applied to facial recognition, they achieve
a 97.6% recognition rate on 5600 images of more than 10
subjects (Matusugu et al. 2003). The ImageNet Large Scale
Visual Recognition Challenge is a benchmark in object
classification and detection, with millions of images and
hundreds of object classes. In Krizhevsky et al. (2012),
ConvNets were able to achieve an error rate of 15.3%

compared to the rate of 26.2% achieved by the second best
competitors (non-deep). Also, the performance of convolu-
tional neural networks on the ImageNet tests is now close
to a purely human-based classification (Russakovsky
et al. 2014).
ConvNets were first applied to galaxy morphological

classification earlier this year in the framework of the Galaxy
Zoo Challenge on the Kaggle platform.13 The goal of the
challenge was to find an algorithm able to predict the 37 votes
of the Galaxy Zoo 2 release. The winner of the competition

Figure 2. Configuration of the Convolutional Neural Network used in this paper. The Network is based on the one used by Dieleman et al. (2015) on SDSS galaxies. It
is made of 5 convolutional layers followed by 2 fully connected perceptron layers. In the convolutional part there are also 3 max-pooling steps of different sizes. The
input are SDDSized CANDELS galaxies as explained in the text and the output (for this paper) is made of 5 real values corresponding to the fractions defined in the
CANDELS classification scheme.

Figure 3. CANDELS Main Morphology visual classification scheme as described in Kartaltepe et al. (2014). Each classifier (3–5 per galaxy on average) is asked to
provide 5 flags for each galaxy corresponding to the main morphological properties of the galaxy as labeled in the figure. The flags are then combined to produce the
fractions of people that voted for a given feature.

13 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge

3

The Astrophysical Journal Supplement Series, 221:8 (23pp), 2015 November Huertas-Company et al.
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Configuration of  the Convolutional Neural Network used in this paper, 
based on the one used by Dieleman et al. (2015) on SDSS galaxies. It 
is made of  5 convolutional layers followed by 2 fully connected 
perceptron layers. 

Following the approach in CANDELS, we 
associate five real numbers with each galaxy 
corresponding to the frequency at which 
expert classifiers flagged a galaxy as having 
a bulge, having a disk, presenting an 
irregularity, being compact or point-source, 
and being unclassifiable. Galaxy images are 
interpolated to a fixed size, rotated, and 
randomly perturbed before feeding the 
network to (i) avoid over-fitting and (ii) reach 
a comparable ratio of  background versus 
galaxy pixels in all images. ConvNets are 
able to predict the votes of  expert classifiers 
with a <10% bias and a ∼10% scatter. This 
makes the classification almost equivalent to 
a visual-based classification. The training 
took 10 days on a GPU and the classification 
is performed at a rate of  1000 galaxies/hour. 

We quantify the evolution of  star-forming and quiescent galaxies as a function of  morphology from z ~ 3 to 
the present. Our main results are: 1) At z ~ 2, 80% of  the stellar mass density of  star-forming galaxies is in 
irregular systems. However, by z ∼ 0.5, irregular objects only dominate at stellar masses below 109M⊙.  2) 

Quenching: We confirm that galaxies reaching a stellar mass M∗ ~ 1010.8M⊙ tend to quench. Also, 
quenching implies the presence of  a bulge: the abundance of  massive red disks is negligible at all redshifts 



MAGNITUDE GAFLIT SERSIC INDEX GALFIT

Tuccillo, MHC+17

FITS ALL 
CANDELS IN 
FEW SECS!

SIZE GALFIT

SE
R

SI
C

 IN
D

EX
 C

N
N

M
A

G
 C

N
N

SI
ZE

 C
N

N

SEE POSTER

GALFIT-type analysis of VELA simulations using deep learning — Marc Huertas-Company

MAGNITUDE GAFLIT SERSIC INDEX GALFIT

Tuccillo, MHC+17

FITS ALL 
CANDELS IN 
FEW SECS!

SIZE GALFIT

SE
R

SI
C

 IN
D

EX
 C

N
N

M
A

G
 C

N
N

SI
ZE

 C
N

N

SEE POSTER

GALFIT-type analysis of VELA simulations using deep learning — Marc Huertas-Company

MAGNITUDE GAFLIT SERSIC INDEX GALFIT

Tuccillo, MHC+17

FITS ALL 
CANDELS IN 
FEW SECS!

SIZE GALFIT

SE
R

SI
C

 IN
D

EX
 C

N
N

M
A

G
 C

N
N

SI
ZE

 C
N

N

SEE POSTER

GALFIT-type analysis of VELA simulations using deep learning — Marc Huertas-Company

MAGNITUDE GAFLIT SERSIC INDEX GALFIT

Tuccillo, MHC+17

FITS ALL 
CANDELS IN 
FEW SECS!

SIZE GALFIT

SE
R

SI
C

 IN
D

EX
 C

N
N

M
A

G
 C

N
N

SI
ZE

 C
N

N

SEE POSTER

GALFIT-type analysis of VELA simulations using deep learning — Marc Huertas-Company

MAGNITUDE GAFLIT SERSIC INDEX GALFIT

Tuccillo, MHC+17

FITS ALL 
CANDELS IN 
FEW SECS!

SIZE GALFIT

SE
R

SI
C

 IN
D

EX
 C

N
N

M
A

G
 C

N
N

SI
ZE

 C
N

N

SEE POSTER

GALFIT-type analysis of VELA simulations using deep learning — Marc Huertas-Company

CNN analyzes ~1000 
images per second 
while GALFIT takes 
hours and sometimes 
is problematic.

Marc Huertas-Company and his group have used deep learning to emulate GALFIT.
The deep learning (convolutional neural net CNN) emulator measurements agree 

with with GALFIT about as well as GALFIT run again on the images. 



Google has supported Marc H-C’s visits to UCSC in summers 2016 and 2017, and his 
grad student Fernando Caro’s visit March-August 2017 using deep learning, 
CANDELS images, and our galaxy simulations to understand galaxy formation
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Figure 3: Evolution of zoom-in galaxy simulation VELA23-RP. The upper three panels show the
probabilities that the galaxy is best fit by GALFIT as a single-Sérsic Bulge or Disk, or instead as
a double Sérsic Bulge+Disk, based on classifications by deep learning codes trained using
synthetic images. (Note that these probabilities do not need to sum to unity, since they are
independent.) Classifications are plotted for 20 di↵erent orientations, with the medians plotted as
heavy lines. The lower panels show the evolution of masses and rates in the inner 1 kpc (left
panel) and out to 10 kpc (right panel). Masses plotted are dark matter (black), stars formed in
situ (red), accreted ex situ stars (green), and gas (blue), and mass rates plotted are star formation
(purple), gas inflow (cyan), and gas outflow (magenta).

mergers leads to stellar mass dominating over dark matter in the inner kpc. The Bulge
probability accordingly increases at z <⇠ 3 and the pure Disk and Bulge+Disk probabilities
drop there. The gas density in the galaxy center then declines as gas is turned into stars
or expelled, and the stellar mass in the inner kpc remains essentially constant for several
Gyr. But on the 10 kpc scale star formation continues, producing a disk around the bulge,
so the Bulge+Disk and the pure Disk probabilities increase and the pure Bulge probability
decreases. Then a gas-rich major merger occurs at z ⇠ 1.2, leading to significant central star
formation with a corresponding increase in the Bulge and Bulge+Disk probabilities and a
decrease in the pure Disk probability.

The key message from this and other tests we have done is that the deep learning codes
e�ciently extract information in the H-band images of the forming galaxy at most orien-
tations that correlates with the astrophysical phenomena. Note also that the compaction
due to gas inflow at z ⇠ 3 and the bulge growth due to a merger at z ⇠ 1.2 lead to similar

7

Evolution of  zoom-in galaxy simulation VELA23-RP. The upper three panels show the probabilities 
that the galaxy is best fit by GALFIT as a single-Sersic Bulge or Disk, or instead as a double Sersic 
Bulge+Disk, based on classifications by a deep learning code trained using synthetic images. 
(Note that these probabilities do not need to sum to unity, since they are independent.) 
Classifications are plotted for 19 different orientations, with the medians plotted as heavy lines. 
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We want to give DL mock images and spectra + simulation metadata
(recent major and minor mergers, counter-rotating gas flows, gas 
inflows, …) as a training set and see if DL can successfully predict 
the key phenomena from the images or the images + spectra.  

For example, in the best cases of S/N and resolution, this might help 
discriminate between different causes of compaction.  The images + 
spectra can also help discriminate between shear caused by 
mergers vs. rotation. 

Greg Snyder and Raymond Simons have created a software pipeline 
to generate mock images and IFU data cubes from all the VELA 
simulations, with resolution appropriate for ground-based, HST, and 
JWST.  It will work with essentially all current hydro simulations.

Avishai Dekel’s Hebrew University group, including Santi Roca-
Fabrege and Sharon Lapiner, Nir Mandelker at Yale, and others at 
UCSC are analyzing VELA and other simulations to create the 
simulation metadata set. 
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Credit: Greg Snyder & Raymond Simons

We want to give DL mock images and spectra + simulation metadata



Camera 10 (fixed in simulation coordinates)

VELA22-RP  z = 4.00

Credit: Greg Snyder

HUDF S/N  27 mag/(arc sec)2



VELA22-RP  z = 3.00

Camera 10 (fixed in simulation coordinates)
Credit: Greg Snyder

HUDF S/N



VELA22-RP  z = 2.12

Camera 10 (fixed in simulation coordinates)
Credit: Greg Snyder

HUDF S/N



VELA22-RP  z = 1.00

Camera 10 (fixed in simulation coordinates)
Credit: Greg Snyder

HUDF S/N



Raymond Simons



Another UCSC deep learning project: better galaxy environment estimates
Joel Primack, Dave Koo, Doug Hellinger, UCSC grad students James Kakos, Dominic Pasquali
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SORT allows recovery of the 2-pointcorrelation function for s > 4 Mpc/h
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Images at various wavelengths (=>photometric redshifts, photo-z’s) are much more plentiful than 
spectroscopic redshifts.  How can we best combine a few spectroscopic z’s with many photo-z’s 
to estimate the environment of  each galaxy?  A preprint by Nicholas Tejos, Aldo Rodriguez-
Puebla, and Joel Primack introduces a method (“SORT”) to do this.  Bryce Menard and 
collaborators have proposed a different approach.  Can deep learning do better? 

photo-z’sspec-z’s sort z’s true z’s
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Ratio of  measured and 
true 2-point correlation 
function as a function 
of  redshift space 
distance s.  Sort gets it 
right for s > 4 h-1 Mpc, 
while photo-z’s fail 
even at s > 40 h-1 Mpc.
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DLA detection using deep learning

Figure 2: An outline of the neural network architecture used. See section V for a more detailed description.

Neural Network Architecture
The neural network architecture is shown in
figure 2. We use a convolutional neural net-
work with three convolutional layers followed
by a fully connected layer.

Convolutional neural networks essentially
break an image into component pieces which
are matched to different parts of the image you
are looking at, then builds these back up in
a hierarchical fashion to construct the desired
result. The process of breaking the image, or
sightline in our case, into component pieces,
and learning what those components are that
are most beneficial in producing a correct re-
sult, forces the neural network to learn con-
cepts such as measuring column density, rather
than simply memorizing the input. Hence con-
volutional network generalize to unseen sam-
ples quite well.

The structure of the network with detailed
hyperparameters is provided in section V.

The architecture consists of an input, which

are the flux values of a 400 pixel segment of
the sightline (for each sightline we pass it every
such 400 pixel segment as separate samples,
1748 of them). The input is not normalized,
but we do pad the blue end of the spectrum
to lrest = 900Å if it does not have data in that
range as discussed in ??. It goes through three
standard convolutional layers each followed
by a pooling layer (essentially down sampling
the input size) which breaks the sightline into
component pieces. Then a fully connected layer
is applied at the end.

The architecture to that point is fairly sim-
ple, three convolutional layers followed by a
fully connected layer. These layers of the net-
work are shared components. The final layer
of the network has 3 independent fully con-
nected layers. Each of these 3 layers connects
to the shared fully connected layer, and each of
the 3 output layers has a loss function: 1) sig-
moid/cross entropy loss for [0, 1] classification;
2) square-loss for [�60,+60] localization; and
3) square-loss for real valued column density
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Figure 15: The sightline is broken into 400 pixel segments in a sliding window, so 1748 inference computations must
be made for each sightline. Using each of the 1748 pixels in the sightline as the center point of a 400
pixel window generates a prediction per pixel. This approach facilitates identifying overlapping DLAs and
generates a large training dataset.

identified sightlines with or without a DLA
(simple binary classification). We then created
a separate network that performed localization
by improving upon the simple binary classifica-
tion and outputting a predicted center point of
the DLA relative to the current input. Finally
we trained a third model to take the samples
where a DLA exists somewhere in the window
and trained it to predict the column density of
the DLA, regardless of its location. We found
that combining the models into one produced
better results than training each model inde-
pendently. An astute reader will note that us-
ing a single model for all 3 of these outputs
will force us to train on areas of the sightline
where no DLA exists, rendering the result of
the column density measurement irrelevant.
We side step this issue by masking the gradient
appropriate, and discuss this in detail in the
section on multi task learning V.

A visualization of the labels for each pixel
in a sightline is shown in the visualization
16. We demonstrate how the data is labeled,
classification is fairly straight forward, as longI think

some
words
are miss-
ing here

I think
some
words
are miss-
ing here

as the DLA is within 60 pixels of the 400 pixel
window it takes on a 1/true value, else 0/false.
Localization operates similarly, though instead
of a 0/1 value the output is an offset between
[�60,+60], essentially pointing to the DLA,
and column density is either the column den-
sity of a DLA if one is within 60 pixels of that
point, or 0 (we again reference the section on
multi task learning for further details here V).

A notable problem occurs at the boundary
where a valid DLA is 61 pixels from the center

of the window and the localization label skips
from ±60 to 0 suddenly. This would certainly
cause a learning algorithm trouble, and to side
step the problem we do not train the algorithm
on these cases, and during inference we do not
need the values at these edges to be accurate,
they go unused and untrained.

The figure 17 shows a sightline and the posi-
tive (green), negative (red), and ignored (grey)
regions. Notably there are far more negative
regions than positive regions of the sightline.
This is the reason that our training dataset only
contains sightlines with DLAs. In training we
sample all positive samples from the sightline,
and an equal number of negative sightlines at
chosen at random so that we maintain a 50/50
balance between positive and negative regions.

Note that we also ignore regions of the sight-
line where Lyb absorption takes place, these
regions are often falsely detected as sub-DLA’s,
and even bonafide DLAs when the true DLA
has log NHI > 21. Training on these regions
does not stop the algorithm from learning, but
lowers its accuracy by training on labels that
indicate no absorption exists when it does. It’s
instructive to point out that the algorithm is
not trained in a manner that would allow it to
identify the difference between a Lya absorp-
tion and a Lyb absorption. Although this is
potentially feasible, we did not include it in
the scope of this work as we can simply com-
pute the Lyb location and mark any identified
absorption as Lyb in post-processing.

Convolutional network architecture: the neural
network is constructed using a fairly standard
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Another UCSC deep learning project: damped Lyα (DLA) systems in SDSS spectra
UCSC grad student David Park, Shawfeng Dong, J. Xavier Prochaska, Zheng Cai 

DLA systems seen in quasar spectra, corresponding to at least 2x1020 hydrogen atoms/cm2,  
represent most of  the neutral hydrogen in the universe at redshifts z = 2 to 4.  About 7000 DLAs 
were identified by astronomers in about 100,000 quasar spectra.  The additional 270,000 
sightlines that recently became available from the Sloan Digital Sky Survey were scanned for 
DLAs by a deep learning code, and the resulting DLA catalog will be made publicly available.

The sightline is broken into 400 pixel 
segments in a sliding window, so 1748 
inference computations must be made for 
each sightline. Using each of  the 1748 
pixels in the sightline as the center point 
of  a 400 pixel window generates a 
prediction per pixel. This approach 
facilitates identifying overlapping DLAs 
and generates a large training dataset. 

An outline of  the neural network architecture used, three convolutional 
layers followed by a fully connected layer. These layers of  the network are 
shared components. The final layer of  the network has 3 independent 
fully connected layers. Each of  these 3 layers connects to the shared fully 
connected layer.  The network is trained using the Adam gradient descent 
optimizer in Tensor-flow. 

DLA DLA
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The Future of Computing Performance:   Game Over or Next Level?

SUMMARY 9

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

Cl
oc

k F
re

qu
en

cy
 (M

Hz
)

FIGURE S.1 Processor performance from 1986 to 2008 as measured by the bench-
mark suite SPECint2000 and consensus targets from the International Technology 
Roadmap for Semiconductors for 2009 to 2020. The vertical scale is logarithmic. A 
break in the growth rate at around 2004 can be seen. Before 2004, processor per-
formance was growing by a factor of about 100 per decade; since 2004, processor 
performance has been growing and is forecasted to grow by a factor of only about 
2 per decade. An expectation gap is apparent. In 2010, this expectation gap for 
single-processor performance is about a factor of 10; by 2020, it will have grown to 
a factor of 1,000. Most sectors of the economy and society implicitly or explicitly 
expect computing to deliver steady, exponentially increasing performance, but as 
these graphs illustrate, traditional single-processor computing systems will not 
match expectations. Note that the SPEC benchmarks are a set of artificial work-
loads intended to measure a computer system’s speed. A machine that achieves 
a SPEC benchmark score that is 30 percent faster than that of another machine 
should feel about 30 percent faster than the other machine on real workloads. 

Big Data Changing 
ComputersSloan Digital Sky Survey (SDSS) 2008  

2.5 Terapixels of images 
40 TB raw data ➠120 TB processed 
35 TB catalogs

Large Synoptic Survey Telescope (LSST) 
 15 TB per night for 10 years 
100 PB image archive 
  20 PB final database catalog

Square Kilometer Array (SKA) ~2024 
1 EB per day (~ internet traffic today) 
100 PFlop/s processing power 
~1 EB processed data/year
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 ~2022

Response: 
Multicore 
& GPUs

Mikulski Archive for Space Telescopes   
185 TB of images 
25 TB/year ingest rate 
>100 TB/year retrieval rate

(MAST) 2013

Increasingly inhomogeneous 
computers are harder to program! 
We need computational scientists 
and engineers and new compilers 
that generate code for nodes with 
cores+accelerators with automatic 
load balancing and fault tolerance.

Astro data and computation are increasing exponentially
                             This will be challenging! 



Deep Learning for Galaxies (a progress report)
Joel Primack

A deep learning code accurately predicted Galaxy Zoo galaxy image classifications, 
winning 2014 Kaggle competition

Marc Huertas-Company used deep learning to classify CANDELS galaxy images

Google supports Marc H-C’s visits to UCSC Summer 2016 and 2017, and his grad 
student Fernando Caro’s visit March-August 2017, using deep learning, HST and 
JWST images and spectra, and galaxy simulations to understand galaxy formation

H-C et al. 2015, Catalog of  Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning 
H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS 
Dimauro, H-C et al. 2017, Bulge and disk evolution in CANDELS — H-C’s talk on Monday

Another UCSC deep learning project: finding damped Lyα systems in SDSS spectra

Better galaxy environment estimates with mostly photo-z’s + some spec-z’s

Marc Huertas-Company and his group use DL to emulate GALFIT, etc. 

Training set = mock images (or mock images plus spectra) plus simulation metadata, to see 
whether deep learning can successfully determine causes of  morphological transformations


