

ALEX FITTS - UT AUSTIN

MIKE BOYLAN-KOLCHIN - UT AUSTIN

JAMES BULLOCK - UCI

OLIVER ELBERT - UCI

JOSE OÑORBE – MAX PLANCK Phil Hopkins – Caltech

AND THE FIRE TEAM

SANTA CRUX GALAXY WORKSHOP 2016

• Dwarf galaxies challenge ΛCDM theory

- Dwarf galaxies challenge ΛCDM theory
- Interesting scale at $M_{vir} \sim 10^{10} M_{\odot}$, $M_{\star} \sim 10^{6} M_{\odot}$

- Dwarf galaxies challenge ΛCDM theory
- Interesting scale at $M_{vir} \sim 10^{10} M_{\odot}$, $M_{\star} \sim 10^{6} M_{\odot}$
 - Core/cusp (Moore et al. 1994, Flores & Primack 1994)
 - Too Big to Fail (Boylan-Kolchin et al. 2011)

- Dwarf galaxies challenge ΛCDM theory
- Interesting scale at $M_{vir} \sim 10^{10} M_{\odot}$, $M_{\star} \sim 10^{6} M_{\odot}$
 - Core/cusp (Moore et al. 1994, Flores & Primack 1994)
 - Too Big to Fail (Boylan-Kolchin et al. 2011)
 - Scale of faintest observed isolated dwarfs

- Dwarf galaxies challenge ΛCDM theory
- Interesting scale at $M_{vir} \sim 10^{10} M_{\odot}$, $M_{\star} \sim 10^{6} M_{\odot}$
 - Core/cusp (Moore et al. 1994, Flores & Primack 1994)
 - Too Big to Fail (Boylan-Kolchin et al. 2011)
 - Scale of faintest observed isolated dwarfs
 - Sensitive to reionization

SIMULATION DETAILS

- GIZMO code + MFM hydro (Hopkins 2015)
- FIRE feedback (Hopkins et al. 2011, 2012, 2013)
- 12 isolated dwarfs at $M_{vir} \sim 10^{10} M_{\odot}$ selected from 35³ Mpc³ boxes

SIMULATION DETAILS

- GIZMO code + MFM hydro (Hopkins 2015)
- FIRE feedback (Hopkins et al. 2011, 2012, 2013)
- 12 isolated dwarfs at $M_{vir} \sim 10^{10} M_{\odot}$ selected from 35³ Mpc³ boxes
- ε_{gas}~ 1.4 pc, ε_{dm}~25 pc
- M_{gas} ~ 500 M_{\odot} , M_{dm} ~ 2500 M_{\odot}

MASS ASSEMBLY HISTORIES

MASS ASSEMBLY HISTORIES

A GLANCE AT M_{\star}

A GLANCE AT M_{\star}

MASS ASSEMBLY HISTORIES

V_{MAX} THROUGH TIME

Kirby et al. 2013, 2014

Kirby et al. 2013, 2014

Observed Star Formation Histories

Skillman et al. 2014

Observed Star Formation Histories

Simulated Star Formation Histories

- All galaxies have same halo mass of $\sim 10^{10} M_{\odot}$
- No cores for halos with M_{\star} < ~10⁶ M_{\odot} (Governato et al. 2012, Di Cintio et al. 2014, Dutton et al. 2016)

CENTRAL DENSITY VS STELLAR MASS

CENTRAL DENSITY VS HALF LIGHT RADIUS

CONCLUSIONS

- 12 high-resolution gizmo + FIRE simulations of isolated dwarf galaxies, all with $M_{vir}(z=0) \sim 10^{10} M_{\odot}$
- Good agreement between simulations and observed isolated dwarfs for M_{*}(z=0), SFH, R_{1/2}, M_{dyn}/M_{*}
- Strong correlation between early dark matter mass assembly and present-day stellar mass
 - higher concentration, higher V_{max} halos build up more stellar mass earlier
- $M_{\star}(z=0)$ correlates well with density reduction
 - No modification from dark-matter-only simulations below M_★~10⁶ M_☉, increasingly large density reduction and dark matter cores at higher stellar masses
- Future work: dwarfs in WDM, SIDM (including hydrodynamics; see talk by V. Robles)

