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Organization 

Nuclear reactions in the early universe 
¨  Lectures (Paris/E. Grohs) 

I.  Overview of cosmology/Kinetic theory/Big bang nucleosynthesis (BBN) 

II.  Scattering & reaction formalism/Neutrino energy transport 

¨  Workshop sessions (E. Grohs/Paris) 
I.  BBN exercises: compute Nuclear Statistical Equilibrium/electron 

fraction 
II.  Compute primordial abundances vs Ωb h2: code parallelization 

¨  Lecture notes 
¨  Will be available online (URL TBA) 
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Possibly useful references 
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We might now substitute numerical values into the above expression for the following
quantities:

⇢c = 1.88⇥ 10�29h2 g/cm3, (225)

mN = 1.67⇥ 10�24 g, (226)

�T = 0.665⇥ 10�24 cm2, (227)

H0 = 100h km/s Mpc�1, (228)

c = 2.998⇥ 105 km s�1 (229)

Collecting:
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Substitution in Eq.(224) gives
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which is pretty close to Evan’s result [Eq.(2)] on his p.15 of Neff v3.1.pdf.
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Outline 

Lecture I 
¨  Overview 

¨  Cosmological dynamics in GR 

¨  Big bang nucleosynthesis (BBN) 

¨  Boltzmann equation 
¤  Flat & curved spacetime 

Lecture II 

¨  Unitary reaction network (URN) of light nuclei 

¨  Neutrino energy transport 
¨  Evan Grohs: observations of primordial abundances 
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Big Bang nucleosynthesis (BBN) in CSM context 

¨  Cosmological Standard Model – ΛCDM 
¨  Formation of 4He, deuterium (D), 3H, 3He, 7Be/Li, … in the 

primordial ‘fireball’ 
¨  Epochs (Hot/dense > cool/rarified) 

¤  Planck > GUT/Inflation > EWPT > QHT > BBN > RC > GF/LSS 

¨  Time of BBN: ~1sec à ~102 sec; TBBN: ~1 MeV à ~10 keV 
¨  Relevant physics: cooling thermonuclear reactor 

¤  work of expansion cools radiation & matter 
¤  weak (neutrino) & strong nuclear interactions (& ???) 
¤  Boltzmann transport, non-equilibrium phenomena 

¨  Comparison to observations 
¤  stunning successes: CMB, helium, deuterium 
¤  perplexing anomalies: dark matter/energy, lithium problem 
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Big Bang nucleosynthesis (BBN) in CSM context 
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FIG. 1: History of the universe in terms of the major epochs defined variously by properties of
radiation and matter.[6]

where ⇢c,100 is a constant with dimension [⇢c,100] = g/cm3 which gives the value of ⇢c when
H0 = 100 km/s/Mpc. Look up the value of H0 in the abstract of the recent Planck collabo-
ration paper[5]. Show that ⇢c,0, in units of the number density of protons, is

⇢c,0 =
3

8⇡
H2

0m
2
pl

= 5.1⇥ 10�6cm�3
⇡ 5 m�3. (100)

Before we turn to the explicit solution of the Friedmann equations we’ll need to talk
about the radiation and matter content of the universe, which we do in the next section
where we study their role in equilibrium and non-equilibrium situations.

III. KINETIC THEORY IN CURVED (FRIEDMANN) SPACETIME

The kinetic theory of coupled radiation and matter is an essential component to under-
standing basic features of the dynamics of the early, hot universe. Figure 1 gives an overview
of the major epochs in the evolution of the universe in terms of the temperature, T (in energy
units) and the redshift z > 1:

1 + z =
a

a0
=

�(a0)

�(a)
, (101)

where �(a) is the wavelength of a photon when the scale factor is a; for distant sources
the emission of a photon with wavelength �(a) is shorter than the wavelength when it is
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Big Bang nucleosynthesis (BBN) in CSM context 

¨  Cosmological Standard Model – ΛCDM 
¨  Formation of 4He, deuterium (D), 3H, 3He, 7Be/Li, … in the 

primordial ‘fireball’ 
¨  Epochs (Hot/dense > cool/rarified) 

¤  Planck > GUT/Inflation > EWPT > QHT > BBN > RC > GF/LSS 
¨  Time of BBN: ~1sec à ~102 sec; TBBN: ~1 MeV à ~10 keV 
¨  Relevant physics: cooling thermonuclear reactor 

¤  work of expansion cools radiation & matter 
¤  weak (neutrino) & strong nuclear interactions (& ???) 
¤  Boltzmann transport, non-equilibrium phenomena 

¨  Comparison to observations 
¤  stunning successes: CMB, helium, deuterium 
¤  perplexing anomalies: dark matter/energy, lithium problem 
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Observations [more from Evan G. tomorrow] 

!! Observational astronomy 
!! existing 10m-class telescopes: Keck, … 

#! Gold-plated: 2% D meas. Pettini & Cooke ‘13 
!! adaptive optics 
!! space- & ground-based observatories 

!! planned 30+m-class telescopes: ELT, TMT, …  

!! Cosmic microwave background 
!! Planck, WMAP, PolarBear, APT, SPT, CMBPol, … 

!! Implications 
!! test physics beyond SM; lab tests difficult/impossible 

!! precision constraints expected to test nuclear physics 

!! Unprecedented precision for primordial nuclear abundances 
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Standard FLRW Cosmology 

¨  Robertson, Walker show homogen., isotropic > Friedmann, 
Lemaître solution to GR unique: 

¨  The ‘Old’, Big Three observations 
¤  expansion: Hubble “constant,” H0= 67.1 km/s/Mpc (Planck) 
¤  CMB: T = 2.73 K 

¤  BBN: concordance at baryon/photon ratio 

¨  HIF universe     may only tune RHS of Einstein-Friedmann Eqn 
¤  radiation: photons, neutrinos, dark radiation 

¤  matter: baryonic, dark 
¤  ΛCDM model: set of assumptions to confront data 

n  Wayne Hu (Uchicago): “alive and well” but issues with growth of 
density fluctuations 

2014 May 15 Paris BBN 

G00 = 8⇡T00; g00 = 1, gij = �a2(t), Kspace ⌘ 0;
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Einstein-Friedmann equations (0) 
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!! An enduring legacy… 



Einstein-Friedmann equations (0) 
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!! An enduring legacy… 



Einstein-Friedmann equations (I) 

¨  Universe dynamics from GR        energy-momentum density 
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Gµ⌫ = 8⇡Tµ⌫

Tµ⌫ = �pgµ⌫ + (p+ ⇢)uµu⌫

g00 = 1, gij = a2(t)g̃ij
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¨  Einstein/Ricci/Curv Scalar ¨  Metric/connection Cosmology notes 10

This gives for the components of the connection:
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jk =

1
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il(g̃lj,k + g̃lk,j � g̃jk,l) ⌘ �̃i
jk. (70)

Equipped with the components of the connection, �i
jk of the FLRW metric, we can

consider the equation of motion of objects in free-fall – the geodesic equation [Eq.(41)]:

ẍ⇢ + �⇢
µ⌫ ẋ

µẋ⌫ = 0. (41)

Consider the ⇢ = 0 (time) component:

d2x0

d⌧ 2
+ �0

µ⌫ ẋ
µẋ⌫ =

d2x0

d⌧ 2
�H(t)(aẋ)2 = 0. (71)

Here, we have defined the Hubble parameter

H(t) =
ȧ(t)

a(t)
. (72)

It is generally a function of t (the ‘Hubble constant’, H0 is the value of the Hubble parameter
now). According to Eq.(71), particles at rest with respect to the cosmological coordinates,
ẋ = 0 have

x0 = !⌧ � ⌧0, (73)

where ! = dx0/d⌧ |⌧0 and ⌧0 are constants that set the rate and zero of universal time.
“Clocks” have ! = 1 and we may take ⌧0 = 0 to coincide with the big bang (see below,
Subsec.IID, on the Friedmann evolution equation).

Exercise 7. Use the ⇢ = 0 component of Eq.(41) to compute the spatial components of the
geodesic for particles at rest with respect to the cosmological coordinates.



Einstein-Friedmann equations (II) 

¨  Knowing energy density (ρ) and pressure (p) 
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Collecting this relation with Eq.(87) gives

✓
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3
⇢, (90)

�

ä

a
=
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3
(⇢+ 3p), (91)

the usual form quoted for the Friedmann equations. Due to the fact that the first equation
above is an (non-linear) ordinary di↵erential equation of first-order in time and that the
second equation is second-order, there is a consistency condition that arises if we di↵erentiate
the first equation once:

⇢̇ = �3(⇢+ p)
ȧ

a
. (92)

Note that we have two equations here for three unknowns, a(t), ⇢(t), p(t) since this equation
is a consequence of the Friedmann equations. In fact, Eq.(92) arises from the fact that the
energy-momentum tensor is covariantly conserved:

T µ⌫
;⌫ = 0, (93)

a consequence of the identity Gµ⌫
;⌫ = 0. So the conservation equation doesn’t close the

system of equations for (a, ⇢, p). It’s a general feature of GR that the conservation of four-
momentum is a consequence of the geometric structure of the theory as encoded in the
Einstein tensor. If we assume that we know the equation of state p = p(⇢), which we do for
non-interacting, non-relativistic matter and for radiation, then we may determine a solution
for the Friedmann equations.

Exercise 9. Show that Eq.(92) is a consequence of Eq.(93).

Let’s assume for the sake of simplicity that the equation of state exists and is given by a
simple power law in the energy density:

p = c⇢x, (94)

where c > 0 is a constant. This relation is similar to the polytropic equation of state.

Exercise 10. Use Eq.(92) to show that the expression for ⇢(a) is given as
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Here, a0 is some reference scale factor with a0 > a, usually taken to be the scale factor now.
Consider the cases: i) c = 0 (pressureless dust); ii) x = 1, c = 1

3 (radiation); iii) x = 1,
c = �1 (dark energy) (Hint: go back to Eq.(92) for this part.)

Tµ⌫
;⌫ = 0 ⇢̇ = �3(⇢+ p)

ȧ

a

¨  Covariantly conserved energy-momentum (not indep. eqn.) 

¨  Two equations for three unknowns: 
¤  Equation of state:   

a(t), ⇢(t), p(t)

p = w⇢x



¨  Acceleration parameter 

¨  Hubble constant 

¨  Redshift 

¨  Current critical density 

 

Einstein-Friedmann equations (III) 

¨  Solution classes 
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Collecting this relation with Eq.(87) gives
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3 (radiation); iii) x = 1,
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p = w⇢x

¨                                 a(t) negative curvature 

¨                                 a(t) positive curvature; inflation 
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Einstein-Friedmann equations (IV) 

¨  Maximally symmetric subspace 
¤  Consequence of homogeneity & isotropy 

¤  ‘Maximal’ number L.I. Killing vector fields N(N+1)/2 (dim N) 
¤  Flows of Killing vector fields generate isometries of manifold 

¤  Friedman universe has MS spacelike hypersurfaces 

¨  Tensors in MS spaces 
¤  scalar: 

¤  vector: 

¤  rank-2 tensor: 
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@µS(x) = 0

A

i(x) ⌘ 0 (A0(x) 6= 0)

Bij = Bji = Cgij C 6= C(x)



Standard BBN – 7Li anomaly 
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as
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¨  n/p ratio 
¤  exquisite sensitivity to neutrino distribution 

¤  ~1:5 

¨  Helium 
¤  exquisite sensitivity to neutrons 

¤  mass fraction Yp~1/4 (p:primordial) 

¨  Deuterium 
¤  ~1:105 

¤  Pettini & Cooke obs. better by fact 5 

¨  Lithium 
¤  mass A=7 

n  3—5σ discrepancy > Li anomaly Review Particle Properties 

Workshop II: generate ‘Schramm plot’ 

h=H0/(100 km/s/Mpc) 



The New, ‘Big Five’ observations  

¨  comprehensive cosmic microwave background (CMB) 
observations (WMAP, Planck, ACT, SPT, PolarBear, CMBPol,...) 
¤  Neff : “effective number” of relativistic species;Yp : 4He mass fraction 

(relative to proton);η(Ωb): baryon-to-photon number fraction; 
Primordial deuterium abundance (D/H)p;Σmν 

¨  10/30-meter class telescopes, adaptive optics, and orbiting 
observatories 
¤  e.g., precision determinations of deuterium abundance dark energy/

matter content, structure history etc. 

¨  Laboratory neutrino mass/mixing measurements	
  	
  
¤  mini/micro-BooNE, EXO, LBNE 
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ΛCDM: Possible discrepancies (I) 

¨  Hubble expansion 
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Planck Collaboration: Cosmological parameters

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat ⇤CDM model con-
straints from Planck and WMAP-9.

excellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦K = 0 (Sect.
6.2) and a dark energy equation-of-state parameter, w = �1
(Sect. 6.5). Since the BAO measurements are primarily geomet-
rical, they are used in preference to more complex astrophysical
datasets to break CMB parameter degeneracies in this paper.

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base⇤CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012) find24

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important
therefore to compare with astrophysical measurements of H0,
since any discrepancies could be a pointer to new physics.

24The quoted WMAP-9 result does not include the 0.06 eV neutrino
mass of our base ⇤CDM model. Including this mass, we find H0 =
(69.7 ± 2.2) km s�1 Mpc�1 from the WMAP-9 likelihood.

There have been remarkable improvements in the preci-
sion of the cosmic distance scale in the last decade or so.
The final results of the Hubble Space Telescope (HST) Key
Project (Freedman et al. 2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = (72 ± 8) km s�1 Mpc�1 (where the error includes esti-
mates of both 1� random and systematic errors). This estimate
has been used widely in combination with CMB observations
and other cosmological data sets to constrain cosmological pa-
rameters (e.g., Spergel et al. 2003, 2007). It has also been recog-
nized that an accurate measurement of H0 with around 1% pre-
cision, when combined with CMB and other cosmological data,
has the potential to reveal exotic new physics, for example, a
time-varying dark energy equation of state, additional relativistic
particles, or neutrino masses (see e.g., Suyu et al. 2012, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their “best
estimate” of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = (73.8 ± 2.4) km s�1 Mpc�1 (Cepheids+SNe Ia), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate in Eq. (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = [74.3 ± 1.5 (statistical) ± 2.1 (systematic)] km s�1 Mpc�1

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the
error range shown in Fig. 16. This estimate agrees well with
Eq. (53) and is also discordant with the Planck value (Eq. 16)
at about the 2.5� level. The error analysis in Eq. (54) does not
include a number of known sources of systematic error and is
very likely an underestimate. For this reason, and because of the
relatively good agreement between Eqs. (53) and (54), we do not
use the estimate in Eq. (54) in the likelihood analyses described
in Sect. 6.

The dominant source of error in the estimate in Eq. (53)
comes from the first rung in the distance ladder. Using the
megamaser-based distance to NGC4258, Riess et al. (2011) find
(74.8±3.1) km s�1 Mpc�1.25 Using parallax measurements for 10
Milky Way Cepheids, they find (75.7 ± 2.6) km s�1 Mpc�1, and
using Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find (71.3 ± 3.8) km s�1 Mpc�1. These
estimates are consistent with each other, and the combined esti-
mate in Eq. (53) uses all three calibrations. The fact that the er-
ror budget of measurement (53) is dominated by the “first-rung”
calibrators is a point of concern. A mild underestimate of the

25 As noted in Sect. 1, after the submission of this paper
Humphreys et al. (2013) reported a new geometric maser distance
to NGC4258 that leads to a reduction of the Riess et al. (2011)
NGC4258 value of H0 from (74.8 ± 3.1) km s�1 Mpc�1 to H0 = (72.0 ±
3.0) km s�1 Mpc�1.
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¨  Planck XVI (2013) 
¤  “tension between the CMB-based 

estimates and the astrophysical 
measurements of H0 is intriguing 
and merits further discussion” 

¤  “highly model dependent” 
¤  ΛCDM extraction 

n  requires assumptions about 
relativistic energy density (RED) 

n  extra RED could explain 
discrepancy 



ΛCDM: Possible discrepancies (II) 

¨  Dark matter & structure 
formation 

2014 May 15 Paris BBN 

¨  Clustering 
¤  Abundance of rare massive 

DM halos exponentially 
sensitive to growth of 
structure 

¤  rms fluct. total mass 8 h-1 Mpc 
spheres with variance 

¤  Discrepancy b/w CMB & 
lensing 

¤  extra RED can reconcile CMB-
inferred	
  σ8 with direct 
observational determinations 
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CDM: Possible discrepancies (III) 

!! Big Bang nucleosynthesis 
!! Lithium anomaly 

!! YP,YDP exquisite sensitivity to 
active neutrino spectrum: 
#! Most neutrons " 4He 
#! Yp $ n/p $ f (p,T) 

!! Thermal effects 
#! Hotter later: less neutrons 
#! Non-equilibrium : less 

neutrons  
!! Probe neutrino sector by 

studying constraints on 
various scenarios imposed by 
precision BBN 
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Possible solutions to lithium anomaly in BBN 

¨  Astronomical explanation 
¤  Spite-Spite plateau 

¤  Robust? Melendez et.al.(2010) ‘broken’ 

¨  Nuclear physics 
¤  resonant destruction of mass 7 nuclides 

n  9B compound system example (below) 
¤  Unitarity: fundamental, neglected property of QM 

¨  Physics beyond the standard model (BSM) 
¤  new particles’ effect on thermal history, etc. 

2014 May 15 Paris BBN 

©          Nature Publishing Group1982

J. Meléndez et al.: Li depletion in Spite plateau stars

Fig. 2. Li abundances vs. Teff for our sample stars in different metallicity
ranges. A typical error bar is shown.

work is that now we select stars with errors in EW below
5% (typically ∼2−3%), instead of the 10% limit adopted in
MR04. The only exceptions are the cool dwarfs HD 64090
and BD+38 4955, which are severely depleted in Li and have
EW errors of 8% and 10%, respectively, and the very metal-poor
stars (B07) BPS CS29518-0020 (5.2%) and BPS CS29518-0043
(6.4%), which were kept due to their low metallicity.

The main sources of error are the uncertainties in equiv-
alent widths and Teff , which in our work have typical val-
ues of only 2.3% and 50 K, implying abundance errors of
0.010 dex and 0.034 dex, respectively, and a total error in ALi
of ∼0.035 dex. This low error in ALi is confirmed by the star-to-
star scatter of the Li plateau stars, which have similar low values
(e.g. σ = 0.036 dex for [Fe/H] < −2.5, see below). Our Li abun-
dances and stellar parameters are given in Table 1 (available in
the online edition).

4. Discussion

4.1. The Teff cutoff of the Spite plateau

Despite the fact that Li depletion depends on mass
(e.g. Pinsonneault et al. 1992), this variable has been ig-
nored by most previous studies. Usually a cutoff in Teff is
imposed to exclude severely Li-depleted stars in the Spite
plateau, with a wide range of adopted cutoffs, such as 5500 K
(Spite & Spite 1982), 5700 K (B05), 6000 K (MR04; S07) and
∼6100 K for stars with [Fe/H] < −2.5 (Hosford et al. 2009).

At a given mass, the Teff of metal-poor stars has a strong
metallicity-dependence (e.g. Demarque et al. 2004). As shown
in Figs. 11, 12 of M06, the Teff of turnoff stars increases for de-
creasing metallicities. Hence, a metallicity-independent cutoff in
Teff may be an inadequate way to exclude low-mass Li-depleted
stars from the Spite plateau. As show in Fig. 2, where ALi in dif-
ferent metallicity bins is shown as a function of Teff, stars with
lower Teff in a given metallicity regime are typically the stars
with the lowest Li abundances, an effect that can be seen even
in the sample stars with the lowest metallicities ([Fe/H] ∼ −3).
This is ultimately so because the coolest stars are typically the
least massive, and therefore have been more depleted in Li
(see Sect. 4.3).

In Fig. 3 we show the Li abundance for cutoffs =5700 K
(open circles), 6100 K (filled squares) and 6350 K (filled tri-
angles). Using a hotter cutoff is useful to eliminate the most
Li-depleted stars at low metallicities, but it removes from the
Spite plateau stars with [Fe/H] > −2. Imposing a hotter Teff cut-
off at low metallicities and a cooler cutoff at high metallicities
eliminates the most Li-depleted stars at low metallicities, but

Fig. 3. Li abundances for stars with Teff > 5700 K (open circles),
>6100 K (filled squares), >6350 K (filled triangles) and ≥5850−180 ×
[Fe/H] (stars). In the bottom panel stars above the cutoff in Teff fall into
two flat plateaus with σ = 0.04 and 0.05 dex for [Fe/H] < −2.5 (dotted
line) and [Fe/H] ≥ −2.5 (solid line), respectively.

keeps the most metal-rich stars in the Spite plateau. We propose
such a metallicity-dependent cutoff below.

4.2. Two flat Spite plateaus

Giving the shortcomings of a constant Teff cutoff, we propose an
empirical cutoff of Teff = 5850−180 × [Fe/H]. The stars above
this cutoff are shown as stars in the bottom panel of Fig. 3.
Our empirical cutoff excludes only the most severely Li-depleted
stars, i.e., the stars that remain in the Spite plateau may still
be affected by depletion. The less Li-depleted stars in the bot-
tom panel of Fig. 3 show two well-defined groups separated at
[Fe/H] ∼ −2.5 (as shown below, this break represents a real dis-
continuity), which have essentially zero slopes (within the error
bars) and very low star-to-star scatter in their Li abundances.
The first group has −2.5 ≤ [Fe/H] < −1.0 and 〈ALi〉1 = 2.272
(σ = 0.051) dex and a slope of 0.018 ± 0.026, i.e., flat
within the uncertainties. The second group is more metal poor
([Fe/H] < −2.5) and has 〈ALi〉2 = 2.184 dex (σ = 0.036) dex.
The slope of this second group is also zero (−0.008 ± 0.037).
Adopting a more conservative exponential cutoff obtained from
Y2 isochrones (Demarque et al. 2004), which for a 0.79 M( star
can be fit by Teff = 6698−2173 × e[Fe/H]/1.021, we would also re-
cover a flat Spite plateau, although only stars with [Fe/H] > −2.5
are left using this more restrictive cut-off. Thus, the flatness of
the Spite plateau is independent of applying a linear or an expo-
nential cutoff.

Adopting a constant cutoff in Teff we also find flat plateaus.
For example adopting a cutoff of Teff > 6100 K (filled squares in
Fig. 3) we find in the most metal-rich plateau ([Fe/H] ≥ −2.5)
no trend between Li and [Fe/H] (slope = 0.019 ± 0.025,
Spearman rank correlation coefficient rSpearman = 0.1 and a prob-
ability of 0.48 (i.e., 48%) of a correlation arising by pure chance
for [Fe/H] ≥ −2.5), while for the most metal-poor plateau
([Fe/H] < −2.5) we also do not find any trend within the
errors (slope = 0.058 ± 0.072, rSpearman = 0.2 and 41%
probability of a spurious correlation). Using a hotter cutoff
(Teff > 6350 K, filled triangles in Fig. 3) we obtain also two flat
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Even if the lithium anomaly is not nuclear or 
BSM in origin, precision cosmology forces better 
treatment of nuclear and astroparticle physics 



Possible refinements to BBN 

¨  Physics beyond the standard model 
¤  Increasing observational precision requires “sharpening the tool” 

n  improve on existing BBN codes from late 60’s 
n  replace equilibrium thermal history > full neutrino transport 

¤  BBN can be used to test BSM & nuclear physics 

¨  Fundamental principle of nuclear physics: Unitarity 
¤  Existing codes’ nuclear reaction networks don’t observe unitarity 

¤  LANL-developed unitary reaction network (URN) for thermonuclear 
boost & burn 

¤  Two objectives from nuclear physics perspective 
n  Test LANL URN in similar (but different, high-entropy) environment 
n  Address fundamental problem in cosmology 

¨  NB: without correct URN, req’d. by QM, BSM physics uncertain 
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BBN project: introduce a new theoretical tool 

¨  Outline for the rest of talk 
¤  1st refinement: neutrino sector 

¤  2nd refinement: nuclear physics 
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BBN project: introduce a new theoretical tool 

!! Outline for the rest of talk 
!! 1st refinement: neutrino sector 

!! 2nd refinement: nuclear physics 
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Unitary, self-consistent primordial nucleosynthesis 

¨  BBN as a tool for precision cosmology 
¤  incorporate unitarity into strong & electroweak interactions 
¤  couple unitary reaction network (URN) to full Boltzmann transport code 

n  neutrino energy distribution function evolution/transport code 
n  fully coupled to nuclear reaction network 
n  calculate light primordial element abundance for non-standard BBN 

n  active-sterile neutrino mixing 
n  massive particle out-of-equilibrium decays→energetic active SM particles 

¤  New tools/codes for nuc-astro-particle community: 
n  test new physics w/BBN 
n  existing codes are based on Wagoner’s (1969) code 

n  we will improve this situation dramatically 
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Kinetic theory: flat spacetime 

!! distribution function 

!! Boltzmann equation 
!! collisionless: 
!! collisional:  
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dN(r,p, t) = d3r dn(r,p, t) = d3r
d3p
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The collision integral is defined as the di↵erence of these two rates
✓

@f

@t

◆

c

= Ri �Ro, (127)

=

Z

d3p2
2E2(2⇡)3

d3p01
2E10(2⇡)3

d3p02
2E20(2⇡)3

⇥ (2⇡)4�(4) (p01 + p02 � (p1 + p2)) |Mfi|
2 (F1020 � F12) . (128)

Considering the factors from left to right, we first encounter the integral over the the mo-
mentum of the projectile, particle ‘2’, which is required since we consider that a particle
with any initial momentum impinging upon the target is capable of scattering it from its
PSE. The next two integration measures is the final state of the two-body system; no matter
the final state, if a collision has taken place we consider that the target has been removed
from its the PSE.

The �(4) function enforces conservation of four-momentum. It ensures, among others,
that if the incoming energy isn’t su�cient to create the masses of the final state particles,
then it sets the integrand to zero. The following factor, |Mfi|

2 is the modulus-squared of the
transition matrix element to go from the initial state |ii = |12i to the final state |fi = |1020i
or from |1020i ! |12i. The amplitude is the same for these two processes if the interactions
respect time reversal invariance and parity conservation: Mfi = Mif .

The last factor takes into account the occupation of the initial and final states. It is
the di↵erence of two correlation functions, each of which is the product of three factors:
the two-particle correlation function for particles (1020) in the initial state multiplied by
Pauli-blocking (Einstein-enhancing) factors for FD (BE) particles in the final state:

F1020 = F (r,p10 ,p20 , t)(1± f(r,p1, t))(1± f(r,p2, t)), (129)

F12 = F (r,p1,p2, t)(1± f(r,p10 , t))(1± f(r,p20 , t)). (130)

The correlation function on the first line, F1020 is for particles scattering into the PSE,
while F12 is for particles scattering out of the element. In fact, we adopt the assumption of
“molecular chaos” and neglect two-body correlations in the initial states, giving, for example

F12 ⇡ f(r,p1, t)f(r,p2, t). (131)

The definition of the di↵erential scattering cross section for the process 12 ! 1020 is[12]

d� =
1

2E12E2|v1 � v2|

d3p01
2E10(2⇡)3

d3p02
2E20(2⇡)3

⇥ (2⇡)4�(4) (p01 + p02 � (p1 + p2)) |Mfi|
2 , (132)

which upon substitution into Eq.(127) gives

✓
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@t
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c

= 2E1

Z

d3p2
(2⇡)3

|v1 � v2|d�(F1020 � F12) (133)

We have been so far been considering a single species’ distribution function, f in the
preceding. When multiple species are present the distribution functions are adorned with
a subscript, fi to denote which particle is being tracked and, possibly, includes information
about its internal state, which may be written in terms of its quantum numbers.
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Figure 7.1: Schematic description of the quantum-mechanical scattering
process. Part of the incident particle current j0 through the cross-sectional
area A is scattered under the angle θ with respect to the beam axis. The
corresponding current scattered into the solid-angle aperture dΩ of the detec-
tor is dj. The asymptotic picture of the scattering process (i.e., the picture
outside of the interaction region) is that of an incoming plane wave and an
outgoing spherical wave that carries the scattering information to the detec-
tor. Assuming a spherically symmetric interaction, this process is cylindrically
symmetric about the beam axis.

The direction of the incoming beam along p is, by convention, taken
as the positive z-axis with the target position de� ning the coordinate
origin, z = 0.

We consider here only central forces. The original spherical symme-
try of such forces is broken by the beam-axis direction, but a cylindrical
symmetry about this axis remains. The scattered part dj of the inci-
dent current that is de
 ected away from the beam axis because of the
interaction with the target, therefore, only depends on the polar angle
θ, and it remains constant for changes of the azimuthal angle ϕ, i.e.,
dj = dj(θ).

The scattered particles are measured with a detector whose detection
aperture covers a solid angle dΩ (see � g. 7.1). If there are ∆N(θ) parti-
cles detected per time ∆t, the corresponding scattering-current density
is

dj(θ) =
∆N(θ)

∆t dΩ
=

number of particles de
 ected by θ

time× solid angle
: (7.2)

For � xed dΩ, this density is independent of how far away from the

scattering center the detector is placed (indeed, it is independent of
whether a measurement takes place at all); it only depends on how
many particles are scattered into the solid angle dΩ subtended around
the direction θ.

The ratio

dj(θ)

j0
=

number of scattered particles per time and solid angle

incident current density
(7.3)

describes the fraction of the incident 
 ux that ends up in this particular
solid angle dΩ. This measure for the effectiveness of the scattering
process at this scattering angle is called the differential scattering cross
section, and it is denoted by

dσ

dΩ
=

dj(θ)

j0
: (7.4)

The units of the differential cross section are area/steradian. Integrating
dσ = dΩ over all directions produces the total cross section,

σ =

∫
dΩ

dσ

dΩ
=

2π∫

0

dϕ

π∫

0

dθ sin θ
dσ

dΩ
= 2π

π∫

0

dθ sin θ
dσ

dΩ
; (7.5)

with units of an area. The product σj0 is equal to the total number of
particles scattered per unit time. Hence, σ corresponds to the total ef-
fective area that produces scattered particles. For example, for classical-
mechanics hard-sphere scattering σ is equal to the cross-sectional circu-
lar area seen by the incident beam, i.e., σ = πR2, where R is the radius
of the sphere. For the scattering of a nucleon off a heavy nucleus (with a
radiusR ∼ 6 � 10−13 cm), we expect a cross section σ ∼ πR2 ≈ 10−24 cm2,
and for the scattering of two atoms (R ∼ 2 � 10−8 cm) off each other,
σ ∼ 10−15 cm2. These are indeed found to be valid orders of magnitudes
for the cross sections of such processes.5

The concept of an homogeneous incident particle beam takes care
of the incoming 
 ux of many identical particles. The cross sections
de� ned here presume that the scattering process takes place on one
single particle. As mentioned already, in practice the target usually
consists of a large number of identical particles. For a thin target (so
that each incident particle scatters at most once before it leaves the

5Note that nuclear cross sections are usually given in a unit called barn appro-
priate for their size, i.e., 1 barn = 10−24 cm2.
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Kinetic theory: curved spacetime 

¨  Liouville operator 

¨  Relativistic Boltzmann equation 
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Entropy production 

¨  Boltzmann H-theorem 
¤  Entropy current 

¨  Equivalence relations 
¤  Collision integral is zero; proper entropy is constant; equilibrium 

distributions 
¤  Collision integral non-zero; proper entropy generation; non-equilibrium 
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Sµ
= �

Z
d3p

(2⇡)3
pµ

p0
[f log f ⌥ (1± f) log(1± f)]

Sµ
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Z
d3p
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Equilibrium distributions 

¨  Fermi-Dirac 

¨  Bose-Einstein 

¨  Maxwell-Boltzmann 

2014 May 15 Paris BBN 

ZBE =
1X

N=0

⇣
e��(✏�µ)

⌘N
=

1

1� e��(✏�µ)
,

ZFD =
1X

N=0

⇣
e��(✏�µ)
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= 1 + e��(✏�µ).

fFD = hNiFD =
1

e�(✏�µ) + 1

fBE = hNiBE =
1

e�(✏�µ) � 1

Cosmology notes 19

The average occupation of a quantum state with energy ✏ is

hNi =
1

Z

X

N

X

s(N)

Ne��(✏
s(N)�µN), (113)

=
@

@(�µ)
logZ . (114)

Taking the logarithmic derivative and defining fBE and fFD we obtain:

fBE = hNiBE =
1

e�(✏�µ)
� 1

, (115)

fFD = hNiFD =
1

e�(✏�µ) + 1
. (116)

Note that when the temperature is high, �(✏�µ) ⌧ 1, these distribution functions have the
same limit

fBE = fFD ⇡ e��(✏�µ) = fMB, (117)

corresponding to the classical, Maxwell-Boltzmann limit for distinguishable particles.
It will be convenient later to have the number and energy density

n(T ) = g(T )

Z

d3p

(2⇡)3
f(p), (118)

⇢(T ) = g(T )

Z

d3p

(2⇡)3
pf(p), (119)

for relativistic (i.e., negligible mass) fermionic and bosonic species with µ = 0. For BE we
have:

nBE = gBE(T )
⇣(3)

⇡2
T 3, (120)

⇢BE = gBE(T )
3⇣(4)

⇡2
T 4. (121)

while for FD we have:

nFD =
3

4
nBE, (122)

⇢FD =
7

8
⇢BE. (123)

Here, we have defined the Riemann ⇣ function ⇣(s) =
P1

n=1 n
�s with values

⇣(3) ' 1.202, ⇣(4) =
⇡4

90
, (124)

and the FD(BE) state multiplicity functions gFD(gBE), which count the number of spin and
internal quantum numbers of the various species of particles. These are shown in Table II.

The indicated T dependence of the multiplicities is a recognition of the fact that the
temperature should be high enough to initate reactions with center of mass energies equal

The equilibrium distributions 
satisfy the condition that the 
collision integral is zero. But 
here we derive them from the 
grand canonical ensemble. 



Kinetic regimes 

!! Equilibrium 
!! Hubble exp. negligible for kinetics 

!! Forward/Reverse rates detail balance 
!! Reaction rate sufficiently fast to explore 

much phase space 
!! Caveat: FLRW no timelike Killing field 

!! Kinetic 
!! Hubble exp. and reactions compete 

!! Non-zero net=F-R rate 
!! Boltzmann H-theorem: dS/dt>0 but ~ 0 

#! However, assume adiabatic 

!! Decoupled 
!! e.g. Relativistic: T~a-1 

!! Free-streaming; distribution frozen 
2014 May 15 Paris BBN 

d�34,12 = dn2h�34,12v12,reli
Reaction rate � � H(t)

� ' H(t)

� ⌧ H(t)



Cosmological transitions (Caveat Emptor) 
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50 3. Thermal History

Exercise.—Derive (3.1.45). Notice that this is nothing but the ideal gas law, PV = NkBT .

By comparing the relativistic (T � m) and non-relativistic (T ⌧ m) limits, we see that

the number density, energy density, and pressure of a particle species fall exponentially (are

“Boltzmann suppressed”) as the temperature drops below the mass of the particle. We interpret

this as the annihilation of particles and anti-particles. At higher energies these annihilations also

occur, but they are balanced by particle-antiparticle pair production. At low temperatures, the

thermal particle energies aren’t su�cient for pair production. Numerically, one finds that the

particle-antiparticle annihilation takes place mainly (about 80%) in the interval T = m ! 1
6m.

We see that this isn’t an instantaneous event, but takes several Hubble times.

Exercise.⇤—Restoring finite µ in the non-relativistic limit, show that

n� n̄ = 2g

✓
mT

2⇡

◆3/2

e�m/T sinh
⇣ µ

T

⌘
. (3.1.46)

QCD

EW

Figure 3.2: Evolution of relativistic degrees of freedom assuming the Standard Model particle content.

E↵ective Number of Degrees of Freedom

Imagine a system with a collection of di↵erent species, possibly in equilibrium at di↵erent tem-

peratures Ti. The total energy density ⇢tot is the sum over all contributions

⇢tot =
X

i

gi
2⇡2

T 4
i J±(xi) , xi ⌘

mi

Ti
. (3.1.47)

It is common to write this in terms of the ‘temperature of the universe’ T (typically chosen to

be the photon temperature T�),

⇢tot =
⇡2

30
g?(T )T

4 , (3.1.48)

⇢(T ) = g?(T )
⇡

2

30
T

4
�

g? =
X

i

gi

✓
Ti

T�

◆4
J⇡i(xi)

J�(0)

⇢(T ) =
X

i=�,⌫j ,`
±
,...

Z
d

3
p

(2⇡)3
f

i

(p)
q
p

2 +m

2
i

=
X

i

g

i

T

4
i

2⇡2
J

⇡i(xi

)

J

⇡i(xi

) =

Z 1

0
d⇠ ⇠

2

p
⇠

2 + x

2
i

e

p
⇠

2+x

2
i + ⇡

i

, x

i

= m

i

/T

NB: Ti=̇T�

Ji(xi) ! ✓

⇣
T � mi

6

⌘
J(xi) ! arbitrary!



Reaction network reduction of Boltzmann eqn 

¨  Reaction network reduction of BEq. (classical, non-degenerate) 
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h��↵v↵i ⌘
1

N

Z
d3p�1

(2⇡)3

Z
d3p�2

(2⇡)3
|v1 � v2|d��↵f↵1f↵2

N =

Z
d3p�1

(2⇡)3

Z
d3p�2

(2⇡)3
f↵1f↵2 ⌘ n(0)

↵1
n(0)
↵1

n(0)
i = gi

Z
d3p

(2⇡)3
e�Ei/T ⇡ gi

✓
miT

2⇡

◆3/2

e�mi/T

1

a3
d

dt
(a3n↵1) =

X

↵2�

Z

p�1p�2
p↵1p↵2

(2⇡)4�(4)(p�1 + p�2 � (p↵1 + p↵2))

⇥ |M�↵|2 (f�1f�2 � f↵1f↵2)

= �
X

↵2�

n(0)
↵1

n(0)
↵2

h��↵v↵i
"
n↵1n↵2

n(0)
↵1 n

(0)
↵2

� n�1n�2

n(0)
�1

n(0)
�2

#



n-p weak equilibrium [Workshop exercise] 

¨  At high T ~ 10’s MeV Xn ~ Xp~ 1/2 
¨  At 10 MeV > T > 1 MeV (ignore nucleons) 

¨  Equilibrium condition 
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n⌫e $ pe�, ne+ $ p⌫̄e, n $ pe�⌫̄e.

dXn

dt
= ��(n ! p)Xn + �(p ! n)(1�Xn)

�(i ! j) = n(0)
` h�jivii

10�310�210�1100101

T� (MeV)
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Y
e

Equil
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Electron Fraction vs. Plasma Temperature (⌦bh2 =2.207E-02)

Xn =
nn

nb
nb = nn + np

Xp ⇡ Xe�

µp = µn =) n(0)
n

n(0)
p

= eQ/T

Q = mn �mp ' 1.293 MeV



Big bang nucleosynthesis [Workshop exercise] 

!! Full reaction network [NB: should be unitary] 

!! Nuclear statistical equilibrium 
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dY↵1

dt
=

X

↵2�

h
� nbh��↵iY↵1Y↵2 + nbh�↵�iY�1Y�2

i
Yi =

ni

nb



End Lecture I 
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