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supernova light curves

some basic physical scales

assume (conservatively) blackbody emission at T ~ 10* K

L =4rR%°0sgT* —> Ry, ~ 10 cm ~ 10* R

if the remnant expanded to this radius over ~20 days

Hon ~ 10% cm s™! ~ 10,000 km s *

=

the kinetic energy of the remnant is then (for M ~ Msun)

1 -
J IS §Mv2 ~ 10°! ergs=1 B
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stellar evolution (>10° years)

l p(r), T(r), Ai(r) at ignition/collapse

explosion (seconds/hours) neutrinos

hydrodynamics, equation of State w3 goray. waves
nuclear burning, neutrino transport X-rays, y-rays
b

py2), v(x¥,2), T(6Y,2), Ai(%Y,2)
in free expansion

expanding ejecta (months)

photon transport
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thermodynamics  ————————)

radioactive decay

optical spectra
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how to explode a supernova
simple description

take a

with a2 mass

and a radius

dump in

get a

white dwarf | helium star red giant
| .4 Msun ~5 Msun 10-20 Msun
107 cm 10" em 10'3 cm
~10°! ergs

hydro, burning, neutrinos, etc...

type la

type Ib/lc

type |l
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energetics

immediately after the explosion (e.g., strong shock)
total energy is split between kinetic energy and radiation

~ 51
Ekinetic ~ Ethermal ~ 10 €rgs

radiation energy dominates over gas thermal energy density
e.g., explode the sun, with E = 10°! ergs

€rad aT? ol T \° /1gcm3
€gas  onkT 108K 0

but the radiation can’t escape because a star is opaque.
The ejecta expands by a factor of 10%2-10° in radius before

the density drops enough to become translucent




temperature (10° K)

initial radiation from supernova explosions

shock breakout x-ray burst from a red super-giant
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converts Eihermal iNto Erinetic as the radiation does work

first law of thermodynamics (with no heat transfer)

O(€raqdV) oV

= e
ot Ot
use chain rule and €rad = 3Prad
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eradV = EradV — V
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so the change in energy density as the radius expands is:
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adiabatic expansion

converts Eihermal iNto Erinetic as the radiation does work

first law of thermodynamics (with no heat transfer)

O(€raqdV) oV
ot — ~Prad E
use chain rule and €rad = 3Prad
€radV + EradV — €r§d V
so the change in energy density as the radius expands is:
brad 4V

_ —4/3 _4
- 3V —_— | g XV x R
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(with v = 4/3 for radiation dominated)

now since

Fosia = ilian == aT* and V x R’



adiabatic expansion

basic thermodynamics

pV"7 = Constant
(with v = 4/3 for radiation dominated)

now since

€Erad — 3prad — CLT4 and V R3

the energy density drops as ejecta radius expands



adiabatic expansion

basic thermodynamics

pV"7 = Constant
(with v = 4/3 for radiation dominated)

now since

€Erad — 3prad — CLT4 and V R3

the energy density drops as ejecta radius expands

Erad X R_4 Or €rqqV = Frng X R_l
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transition to free expansion

right after the explosion shock, the sound speed ¢; is of order the
expansion velocity, but ¢; drops with adiabatic cooling

o = \/ Prad  p-1/2
0

after significant expansion from the initial radius we have

cs K Vexp When R > Ry

pressure waves can’t communicate forces faster than the ejecta
expands, so hydrodynamics freezes out and fluid moves ballistically

negligible

R(t) :vt+§{




homologous expansion

self-similar ejecta structure expands over time

R(t) = vt
p(t) = po(Ro/R)® oc t 7

rule of thumb:

to reach homology

run your hydrodynamics
simulations until

Rﬁnal >~ |0 RO
better: Rena ~ 100 Ro

CheCk, Ethermal << Ekinetic
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duration of the light curve

the diffusion time of photons through the optically thick remnant

td=T|— ZKJ,OR

MK

N ————

Rc

but since the remnant is expanding, R = vt

MK

tq ~

(vt)c

solving for time (i.e., diffusion time ~ elapsed time)

tq ~

—g%gff

UC

1/2

since
p~ M/R’

e.g.,arnett (1979)
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diffusion in an expanding medium
arnett 1979, 1980, 1982

- 941/2
Me1Y
VC

— —

tq ~

or substituting: U = \/QE/M

gives the scaling relation for light curve duration

tq ~ 29 days Mll’gm(l)./ngll/él

mass often tends to be the dominating factor
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opacity terminology

o = “cross section” (cm?)
e
X = on = kp = “extinction coefficient” (Cm_l)

A =1/x = “mean free path”

for example

or ~ 0.6 x 107%* cm? for thomson scattering

LionOt —
R = ~ 0.4 for ionized hydrogen
Ma

~ (0.007 for singly ionized iron



sources of supernova opacity
see karp (1977) pinto and eastman (2000)

thomson

. interaction with free electrons optical
scattering

scattering/absorption from

atomic lines doppler broadened lines UV/optical
bound-free photo-ionization of atoms UV
free-free bremsstrahlung infrared

(free electron + nucleus)

all of these depend sensitively on the
composition and ionization state of the ejecta!
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how to power a
supernova light curve

thermal energy released in the explosion
shock, nuclear burning

radioactive decay of freshly synthesized
isotopes: *®Ni (°*Fe, “8Cr, #Ti, R-process)

interaction of the ejecta with a dense
surrounding medium

energy injection from a rotating, highly
magnetized neutron star (magnetar)




thermally powered
supernovae

(Type IIP)
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luminosity of thermal light curve
energy deposited by the explosion

the radiation energy drops in the expanding gas

Erad (t) —

Eq

Ry 1 and takes a "M 1/2
diffusion time {q ~ | ——
R(t) 1 to escape BT

simple estimate of supernova luminosity

_RO
_Utd

~ 104} ergs s™! R, olisikg 4M -



luminosity of thermal light curve
energy deposited by the explosion

the radiation energy drops in the expanding gas

Erad (t) —

Eq

Ry and takes a

to escape

simple estimate of supernova luminosity

low radiative efficiency if initial radius is small!

_RO_
_Utd_

~ 10*! ergs s~

diffusion time {q ~ | ——

g oS

Rl OE51K/0 }lM

for a bright thermally powered supernova, must have Ro >> Rgun
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fixed E/M

scp06f6
(") 2005ap @lgtf09cnd R = 10% Rsun

ordinary
core collapse
supérnovae

/)
;6
(4o
|
|
50
L
G
)
)
00
|
)
C
)

More

more massive (longer diffusion time) ——

10 100
light curve duration (days)



Type lIP core collapse supernovae

explosion of red supergiant stars
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recombination wave in Type |IP supernova

opacity from electron scattering drops as ejecta cool and become neutral
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light curve scalings with recombination
gives a Type |l plateau light curve

the photosphere forms at the recombination front

L Eo Ry

B 47T0'TI4 N vtﬁaTI‘l

Ry

where the recombination temperature T; =~ 6000 K.

Using previous results for diffusion time:

toy OX E_1/6]\Jlj/QR(l)/G/431/6TI_2/3

Len o< B/ M2 RY P k=137,

see Popov (1993), DK & Woosley (2009)
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radioactively powered light curves

most important chain: °Ni = °°Co =2 >°Fe
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radioactive °°Ni decay

°Ni — °°Co 88days  100% electron capture

o
60 — 9OFe 113 days 81% elec.tron capture
| 9% positron production

IMPORTANT GAMMA-RAY LINE FOR “®Ni anD 2°Co DECAYS

ONi DEecay %Co DEecay

Energy Intensity Energy Intensity

(keV) (photons/100 decays) (keV) (photons/100 decays)
158............ 98.8 847 100
270.......... 36.5 1038 14
480............ 36.5 1238 67
750............ 49.5 1772 15.5
812............ 86.0 2599 16.7
1562.......... 14.0 3240° 12.5

milne et al. (2004)
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since gamma-ray energies (MeV) are much greater than
ionization potentials, all electrons (free + bound) contribute

change in photon wavelength angle between incoming

h / and outgoing photon

)\Out — Aln I (1 — COS 0) directions
M
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gamma-ray deposition by compton scattering

since gamma-ray energies (MeV) are much greater than
ionization potentials, all electrons (free + bound) contribute

change in photon wavelength angle between incoming

h / and outgoing photon

)‘out — )\ln I (1 — COS 0) directions
M

change in photon energy from inelastic scattering

- E. i _1
Eout = Ein |14 m:clz (1 — cosf)

so an MeV (~2 m.c?) gamma-ray loses most of its energy after
just a few compton scatterings (then it gets photo-absorbed)
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type la gamma-ray spectrum
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light curve duration given by standard diffusion time
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radioactive supernovae

light curve estimates

light curve duration given by standard diffusion time
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arnett’s law

O€radV) OV
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use V o t°, Prad = €rad/3
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assume diffusion approximation for photon loses
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Interacting supernovae

simple estimate of peak luminosity

peak luminosity for shocked debris at shell radius
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Interacting supernovae

simple estimate of peak luminosity

peak luminosity for shocked debris at shell radius
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Interacting supernovae

simple estimate of peak luminosity

peak luminosity for shocked debris at shell radius

Lign

—

Rsh

Lign ~ v

to reach the hig

 Rsn
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1
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Rsh

5 E
~ 10* ergs s

r

Ry = 10* Rg =~ 10*° cm

time between pulses of ejection

bty = Riolvsh; = 2 years

110* Ro

nest luminosities, shell must be at radius
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neutron star spindown

~|0% of neutron stars are born as magnetars,
with B~ 0% - 10> ¢

rotational energy

1 P \"°
Hpaye= ilnsﬂz — 2 x 10°Y ergs ( )

10 ms

spindown timescale

t 61, ;3 B \"°/ P \°
m— = 1.3 yrs
BB () . 1014 g 10 ms




light curves from magnetars

roughly

L ~ % (tm) high radiative efficiency when

tq E B,P give tm ~ td

better (for | = 2)

o I t L
Lyeak = m2 In (1 | = ) £
td B td F tm_

= E ol 1/2
{ — ¢ m { il kasen&bildsten
peak — 'm m (20 | O)




absolute magnitude
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Monte Carlo and Numerical
Radiation Transport



light curve computation

p(x.y,2), v(x:1,2), T(x.y,2), Ai(xY,2)
from hydro explosion

advance

time step
update matter state

calculate matter

R « (temperature, density,
opacity/emissivity ionization from
thermodynamics)

determine radioactive solve radiation

energy deposition transport equation
(gamma-ray transport) for optical photons




radiation transfer equation

I A
“ o I+n+ %dﬂ R(A,n)]

as ¥ X \

absorption emission scattering

where:

I(ZB, Y, <, )\, 9, ¢) radiation specific intensity
77(.’12, Yy, 2, )\) matter emissivity

X (:E, Yy, 2, )\) matter extinction coefficient

a 6 dimensional integro-differential equation
coupled through microphysics to matter energy equation



transport methods in astrophysics

grey flux limited diffusion
ignore 0,9, A dependence, solve diffusion equation
for “seeping” radiation fluid

multi-group flux limited diffusion (MGFLD)

ignore 6,¢, keep A4 dependence, solve diffusion equation

ray tracing
follow individual trajectories; ignore scattering and diffusive terms

implicit monte carlo transport

mixed-frame stochastic particle propagation; retains
the full angle, wavelength, & polarization information

variable Eddington tensor
solve moments of the radiation transport equation with closure relation
Sn methods, etc....




2-D shadow problem

multi-angle transport (monte carlo)
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2-D shadow problem

diffusion approximation (DD monte carlo)



2-D shadow problem

diffusion approximation (DD monte carlo)




special relativistic transport

in |-D radiating flows
e.g., mihalas&mihalas

dl

= —xI+n+ fdﬂ R(A,n)]



special relativistic transport

in |-D radiating flows
e.g., mihalas&mihalas
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comoving frame spherical special relativistic transport eq.




monte carlo transport
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calculating pi at the bar

Signal to noise
goes like N-!/2
Need to throw
N = 10,000 darts
to get pi to two
significant digits
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monte carlo transport

each particle has a position vector (x,y,z)
a direction vector (Dx, Dy, D;), an energy, wavelength.
Evolution is sampled from appropriate probability distributions



monte carlo transport

each particle has a position vector (x,y,z)
a direction vector (Dx, Dy, D;), an energy, wavelength.
Evolution is sampled from appropriate probability distributions

probability of traveling a distance x before scattering

P =exp(—7) = exp(—kpz) =R

where R is a random number sampled
uniformly between (0, 1]



monte carlo transport

each particle has a position vector (x,y,z)
a direction vector (Dx, Dy, D;), an energy, wavelength.
Evolution is sampled from appropriate probability distributions

probability of traveling a distance x before scattering

P =exp(—7) = exp(—kpz) =R

where R is a random number sampled
uniformly between (0, 1]

solve for x (distance traveled before scattering)

z = —(kp) " log(R)
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special relativistic transport

in |-D radiating flows
e.g., mihalas&mihalas
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special relativistic transport

in |-D radiating flows
e.g., mihalas&mihalas
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mixed frame monte carlo transport

opacities/emissivities calculated in the comoving frame

monte carlo particles propagated in the observer frame
lorentz transformation photon four vector at scattering events

vo=9v(1-d-v/c)

lorentz
X ="7Xo(1—d-v/c) transformations
3 v, vd-v/c B .
do—(d c [1 7+1 ])[7(1 ‘ v/c)]

automatically accounts for all aberration, advection,
doppler shifts, and adiabatic loses to all orders of v/c

general relativistic effects (geodesic tracking) can also be included
e.g., Dolence et al., (2009), Dexter et al., (2009)



implicit monte carlo methods

fleck and cummings 1971

|
Gp = [V Az Z €oliX0(V0)] — xoaT,

0= v/ A ZéolzXO(Vo)dB

momentum four-force
vector (i.e., radiative
heating/cooling,
radiative acceleration)

timescale for matter/radiation coupling

lp, nkT

trm ~ ~—mp K tdyn, tdiff

implicit methods: particle absorption/re-emission (i.e.,
creation/destruction) is replaced by “effective scattering”



population control and load balancing

For highly asymmetric
3D radiative flows, some
zones may be under
(over)-sampled

by monte carlo particles

strategies
pressure tensor methods
russian roulette

particle splitting/killing
directionally biased emission
replicate heavily loaded zones

black hole
radiation source

black hole accretion disk
(Nathan Roth, UCB)



population control and load balancing

For highly asymmetric
3D radiative flows, some
zones may be under
(over)-sampled

by monte carlo particles

strategies

pressure tensor methods
russian roulette

particle splitting/killing
directionally biased emission

Z axis (pc)
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radiation temperature

discrete diffusion monte carlo
gentile 2001, densmore et al 2007

For regions of high opacity, monte carlo is very inefficient.
Instead, sample from the diffusion approximation:

| SR - R

120 —rr—r—rTr—r—r—r—yr—r— T T T —r—r—r—r . cle o
monte carlo | jump probabilities
. discrete diffusion J
100 8 P c At
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40} ) R AN
20} N N Patay =1
Oaf f o ! ""-,| W*q norm = :1 + Pr+ Pr, + P a,bs] A
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monte carlo parallelization strategies

using hybrid MPl/open MP, run on 10,000-100,000 cores
using Cray XE6 (Hopper @ NERSC),
Cray XT5 (Jaguar @ ORNL) Blue Gene/P (Intrepid @ ALCF)

full replication

each core holds entire model and propagates particles independently;
MPI all reduce of radiation/matter coupling terms after each time step.
Memory limited (2D, low resolution 3D).

domain decomposed

spatial grid partitioned over cores
particles leaving local domain communicated via MPI to neighbors

hybrid

use openMP threading to do additional particles on shared memory node,
can fully replicate certain domains on additional nodes to extend scaling
and manage load balancing.



weak scaling: 2D transport calculation
full replication -- embarrassingly paralell

SEDONA 4.0 weak scaling for 4K photons/CPU on BG/P (VN mode)
i —e
10 00— ——
8 | H— = —i e
—_— -
= L
E 6
o £
E T
o 5 ® Total calculation
S 4 .
é . m y-ray calculation
i 4+ Photon calculation
9 |- Opacity calculation
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Number of CPUs (divided by 1024)
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domain decomposed

monte carlo transport

hybrid MPl/open MP
BoxLib AMR framework

on Hopper XE6 (NERSC)

2 twelve-core AMD “Mangy-Cours”
(4 NUMA “nodes” of 6 cores)
2.1 GHz processors per node

@ 49,152 cores (2048 nodes)

total particles =1.8x 0!
total cells = 4.5 x 107
wavelength points = 10,000
total memory =65TB
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