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Hydrodynamic Equations

Recall our basic hydrodynamic equations

Mass ρt +∇ · ρU = 0

Momentum (ρU)t +∇ · (ρUU + p) = ρ~g

Energy (ρE)t +∇ · (ρUE + pU) = ∇ · κ∇T

Species (ρXm)t +∇ · (ρUXm) = ω̇m

Augmented (“closed”) with

EOS = Thermodynamics, i.e. how to compute p from ρ,T ,X

Network = Reaction kinetics, i.e. how to compute ω̇m

Gravity – we’ll come back to this...
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Conservation Form

Recall also that we could write this in conservation form with source terms:
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Because this is a purely hyperbolic system (with source terms),

We can solve it with an explicit method

Signals move at speeds U, U + c, U − c,

If we limit ∆t < ∆x/max(|U|+ c), then information never travels more than one
cell in a time step
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Review of AMR for Hyperbolic System–1d

Consider Ut + Fx = 0 discretized with an explicit finite difference scheme:

Un+1
i,j = Un
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In order to advance the composite solution we must compute the fluxes consistently:

∆t f

∆xf ∆xc

× × × × × ×
i−1 i I I+1
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Hyperbolic–composite advance

One can advance the coarse grid

∆t f

◦ × ×
(I−1) I I+1

then advance the fine grid

∆t f
× × × × ◦ ◦ ◦

i−1 i (i+1)

using “ghost cell data” at the fine level interpolated from the coarse grid data.

This results in a flux mismatch at the coarse/fine interface, which creates an error in
Un+1

I . The error can be corrected by refluxing, i.e. setting

∆xcUn+1
I := ∆xcUn+1

I −∆t f F c
I−1/2 + ∆t f F f

i+1/2

Before the next step average fine grid solution onto coarse grid.
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Hyperbolic–subcycling

To subcycle in time we advance the coarse grid with ∆tc

∆tc

◦ × ×
(I−1) I I+1

and advance the fine grid multiple times with ∆t f .

∆t f

∆t f

∆t f

∆t f

× × × × ◦ ◦ ◦
i−1 i (i+1)

The refluxing correction now must be
summed over the fine grid time steps:

∆xcUn+1
I := ∆xcUn+1

I

−∆tcF c
I−1/2 +

X
∆t f F f

i+1/2
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End of story?

No ... let’s talk about gravity ...
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Gravity (Non-relativistic)

Possible representations – relevance depends on length scale:

On very small scales, gravity can be viewed as negligible

On slightly larger scales, gravity can be viewed as constant (in direction and
magnitude)

On even larger scales, we must compute the gravitational field given the mass
distribution as a function of space and time – and the mass in one place affects
the gravity everywhere else in the domain
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Self-Gravity

Can represent mass as

discrete particles / blobs

continuous distribution (ρ(x, t))

Different solution methods include

particle methods (e.g. O(N2), multipole methods)

grid-based methods (i.g., solve ∇2φ = 4πGρ on a grid)

hybrid methods (e.g., MLC = grid method with particle correction)

Note that we can represent mass as particles but solve for gravity on a grid (e.g. dark
matter in cosmological simulations), or we can think of mass as a density distribution
on a grid but solve with a particle-type method (e.g. multipole method).
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Monopole Approximation

Monopole approximation

Suitable for mass distribution that is basically spherically symmetric

Easy to calculate
Compute 1-d radial array representing ρ(r)
Compute enclosed mass Mencl(r) =

R
4π(r ′)2ρ(r ′)dr ′

Define g(r) = GMencl/r2 and interpolate onto grid

Note that this is explicit but requires global communication to create ρ(r)

This approach can be extended to much more generality in multipole method
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Self-Gravity

For a completely general mass distribution on a grid, we can solve

∇2φ = −4πGρ(x, t)

Solving this equation

is inherently non-local

requires some kind of solver for sparse linear system
direct - great for small systems
iterative - more efficient for larger systems

Boundary conditions

periodic

Neumann, Dirichlet

free-space / isolated
from the monopole approximation
using James’ method
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Iterative Solvers

If you replace
∇2φ = 0 (1)

by
φt = ∇2φ (2)

and advance (2) forward in pseudo-time until you reach a steady state, the steady state
will satisfy (1).

The process of advancing the solution to (2) in pseudo-time is called ”relaxing” or
”smoothing”.

Standard relaxation methods:

Jacobi: φk+1
i,j = L(φk )i,j

Gauss-Seidel: φk+1
i,j = L(φk , φk+1)i,j
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Multigrid Method

Observation (1) – these smoothers are very efficient at reducing the short-wavelength
error, but are very slow to reduce the long-wavelength error.

Observation (2) – “wavelength” is relative to the grid spacing – what is long-wavelength
at one grid spacing is short-wavelength on a much coarser grid.

Basic multigrid algorithm

Relax on fine grid

Coarsen the error onto coarser grid (“restriction”)

Relax on coarser grid

Interpolate correction back to fine grid (“prolongation”)

Almgren, LBNL M3



lab-logo

Multigrid Method
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(Figures from John Shalf)
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Multigrid with AMR

This starts to sound suspiciously like AMR.

So how do we solve ∇2φ = −4πGρ(x, t) with AMR?

Need to differentiate between “AMR levels” and “multigrid levels”

No coarse-fine boundaries between multigrid levels – coarse grids all lie directly
”below” fine grids

AMR levels contain the solution throughout the simulation

Multigrid levels are only used for solving the linear system, then thrown away

Almgren, LBNL M3



lab-logo

Multigrid with AMR (p2)

But ... the concepts in multigrid are very similar to those in AMR:

Level operations – relaxation (mg) vs solution advance (AMR)

Inter-level operations – prolongation and restriction

However, synchronization procedures due to coarse/fine mismatches occur only
between AMR levels
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Multigrid with AMR (p3)

Two types of solves:

MultiLevel solve: solve for all AMR levels together – e.g., in FLASH, with no
subcycling

Level solve: solve on each AMR level separately, using boundary conditions from
coarser AMR level

For now we will focus only on the level solves, and look at how we synchronize the
solution in 1-d.
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Multigrid for Level Solves

Suppose we want to solve on the level 1 (blue) grids only.

1

Original Grid Hierarchy

1

AMR Level 1 / Multigrid Level 0

1

AMR Level 1 / Multigrid Level 1

1

AMR Level 1 / Multigrid Level 2
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Elliptic AMR

Recall the AMR time advance with subcycling:

Advance coarse level by ∆tc

Advance fine level by ∆t f

Advance fine level by ∆t f

Synchronize levels

Now, suppose we include in each “Advance” the solution of an elliptic equation, i.e. for
gravity.

During the synchronization step we must also synchronize the elliptic contribution.
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1-D Example: Elliptic AMR

Look at 1d example

−φxx = ρ

where ρ is a discrete approximation to the
derivative of a δ function at the center of
the domain

ρf
J = −α ρf

J+1 = α

but ρc ≡ 0

Notice that the coarse and fine solutions
match but their gradients do not.

In other words, we have enforced a
Dirichlet (but not Neumann) condition.
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1-D Example: Elliptic AMR (p2)

How do we correct the solution during the
synchronization?

Similarly to the hyperbolic synchroniza-
tion, we define the flux mismatch be-
tween coarse and fine levels.

Here the flux is in the form of the nor-
mal derivative of φ at the coarse-fine in-
terface.

Big difference is that the “refluxing” re-
quires the solution of a correction equa-
tion, Le = R, which is also elliptic.

Residual is localized to the c − f
boundary but correction is global

The error equation is a discrete
layer potential problem

e is a discrete harmonic function
on the fine grid→ solve only on
coarse grid and interpolate
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Coarse/Fine (blue) + Correction (green) = Exact (red)
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Extension to Multi-D

When we extend to multiple space dimensions, we must now interpolate tangentially as
well as in the normal direction.

Simple interpolation formulae that we used for the hyperbolic part are not sufficiently
accurate for second-order operators.

ϕyc

ϕyc

ϕxc-f

ϕxc-f
ϕxc

Note that we do not pre-compute the green circle as a boundary value – why?
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Summary: Multiphysics AMR

Basic integration paradigm works for hyperbolic, elliptic and parabolic PDEs

Synchronization equations match the structure of the process being corrected.

Combine these elements to make a number of different codes

Add radiation solver to basic hydro code (e.g., MGFLD in CASTRO)

Cosmology (hydro + dark matter)

Low Mach number model

Key issue is keeping tracking of different aspects of synchronization and performing
them in the right order
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