Science with synthetic images from cosmological simulations

Greg Snyder

 STSclUCSC Aug 15, 2014

Jennifer Lotz, Mike Peth, Paul Torrey, Chris Moody, Joel Primack, Daniel Ceverino, Mark Vogelsberger, Shy Genel, Lars Hernquist,

> Current diagnostics do not:

- exploit all information in observations

〉 accurately classify rare but important stages
〉 necessarily give 'plausible life stories'

I. Illustris Simulation Observatory: sub-kpc resolved mock images of $\sim 10,000$ galaxies in $(100 \mathrm{Mpc})^{3}$

2. Hydro-ART mock HST images: very high time (30 Myr) and space ($\sim 25 \mathrm{pc}$) resolution

e.g., Moody et al. 2014 McGrath et al. talk

Wuyts et al. 201 I

Illustris Project
 Vogelsberger et al. 2014ab Genel et al. 2014

- Goal: simulate a galaxy population
, Volume: $(\sim 100 \mathrm{Mpc})^{3}$
> Scales: ~ I ckpc
> Physics: sub-grid feedback from SNe and SMBHs
$\rangle \sim 10,000$ galaxies, $M_{*}>10^{9.5} M_{\text {sun }}$

Illustris Simulation Observatory

Torrey, GFS et al. (submitted) ; GFS et al. (in prep)
> ~100 timesteps
$>\sim 10,000$ objects of interest
〉 ~ 4 viewing directions
> ~ 25 filters
> $\sim 100,000,000$ synthetic images

Genel et al. 2014

Genel et al. 2014

Snyder et al. (in prep.)

Data

Theory

Data

Theory

, SF shutoff correlated with light profile concentration - Feedback set to M average kpc-scale structure

Wuyts et al. 20I I

Snyder et al. (in prep.)

Physics model imprints a signature on quantitative structures.

Snyder et al. (in prep)

Snyder et al. (in prep)

Snyder et al. (in prep)

k-correction

Zoom simulations

z~2

Joel Primack, Jen Lotz, Daniel Ceverino, Mike Peth, Chris Moody, Liz McGrath, Avishai Dekel, Peter Freeman

> Typically more bulge-dominated with time, but some outliers
> SF and mass correlated with structure in expected ways (not shown)

Some outliers in structural evolution are also outliers in merger diagnostics

time

VELAI 5

In images, many merger-like "events" are short and noisy.

Summary

- Galaxy physics tuned to mass \& SFR also reproduces coarse morphology, on average
> Actual paths taken are diverse at $\mathrm{z}>1$: interactions can trigger bulge or disk growth
- Merger diagnostics are triggered briefly by both minor mergers and clumpy star formation

What is the best diagnostic for X ?

- Often, $X=$ empirical
> Hydro sims + synthetic data, $X \rightarrow$ explicit

Zoom simulations

$\mathrm{z} \sim 2$

Joel Primack, Jen Lotz, Daniel Ceverino, Mike Peth, Chris Moody, Avishai Dekel, Peter Freeman

Zoom simulations

$\mathrm{z} \sim 2$

Joel Primack, Jen Lotz, Daniel Ceverino, Mike Peth, Chris Moody, Avishai Dekel, Peter Freeman

nyder et al. (in prep.)
$\log _{10} \mathrm{M}_{*}(\mathrm{z}=2) \approx$
9.4

nyder et al.
(in prep.)
$\log _{10} \mathrm{M}_{*}(\mathrm{z}=2) \approx$
9.4

Snyder et al. (in prep.)

Snyder et al.
(in prep.)

Galaxy physics model imprints a signature on quantitative structures. Snyder et al. (in prep)

Physics and first results: approaching realistic populations

Vogelsberger et al. 2013 ; Torrey et al. 2013 ; I/30 volume tests

"Hydro Mock Observatory"

following Kitzbichler \& White '07, Overzier 'I3, etc

Theory
Data
Vogelsberger et al. (incl. GFS, 2014)

Theory

Data

mass

Fig. 1.-Lorenz curve: the Gini coefficient is the area between the Lorenz curve of the galaxy's pixels and that of equitable distribution (shaded region). The given curve is for $\mathrm{S} 0 \mathrm{NGC} 4526, G=0.59$.
e.g., Lotz, Primack \& Madau 2004, Conselice 2003, etc

$$
\begin{equation*}
M_{20} \equiv \log 10\left(\frac{\sum_{i} M_{i}}{M_{\mathrm{tot}}}\right), \text { while } \sum_{i} f_{i}<0.2 f_{\mathrm{tot}} . \tag{8}
\end{equation*}
$$

Automated Methods

e.g., Freeman et al. 20I3

Modeling Tools

isolated or merging galaxies, e.g., Jonsson '06, Lotz+ '08,
Younger+ '09, Wuyts+ ' 10 , Bush+ ' 10 , Narayanan+ ' 10 ,
Jonsson+ 'I0, Hayward+ 'II,I2ab, Snyder+ 'II, Snyder+ 'I3

> [e.g.,] Gadget (Springel 05)

- SPH+N-body simulations
> ISM model with star formation, SN feedback, \& metal enrichment
- Supermassive black hole accretion and thermal feedback
> [e.g.,] Sunrise (Jonsson 06, Jonsson et al. 2010a,b)
- Assigns input stellar,AGN SEDs, and dust opacities

〉 3D dust radiative transfer: absorption, scattering, (emission)
> Pan-chromatic SED from arbitrary viewing angles and positions

