Galaxy Evolution at z > 2: Cosmic Starvation, Mergers, and Morphology

Robert Feldmann UC Berkeley

Lucio Mayer

Davide Fiacconi

University of Zurich

Feldmann & Mayer, arXiv:1404.3212 Fiacconi, Feldmann, & Mayer, to be submitted

- 1. Introducing the Argo Simulation
- 2. Quenching of massive galaxies at z>2
- 3. Morphological transformations of galaxies at z>2

Goal: study the formation/evolution of $z \ge 2$ galaxies with high fidelity

Argo what?

- a cosmological zoom-in simulation of a proto galaxy group (~2×10¹³ M_☉ at z=0)
- 3 comoving Mpc region incl: 1 massive galaxy & tens of lower mass galaxies

Argo or ARGO? Acronyms Really Get On my nerves

Argo what?

- run with the TreeSPH code Gasoline
- efficient SN feedback ("blastwave"), no AGN feedback

• the highest resolution run in Argo:

softening ~100 pc, m_{SPH} ~10⁴ M $_{\odot}$ \rightarrow same as Eris but more massive

Sequences of SF vs Quiescent Galaxies exist already at z~2

Franx+2003, Cimatti+2004, Saracoo+2004, Förster-Schreiber+2004, Daddi+2005, Labbé+2005, van Dokkum+2006, Kriek+2006, Arnouts +2007, Wuyts+2007, Reddy+2008, Franx+2008, Toft+2009, Williams +2009, McCracken+2010, Ilbert+2010, Newman+2011, Brammer +2011, Cassata+2011, Whitaker+2011, Onodera+2012, van de Sande +2012, Bezanson+2013, Whitaker+2013, Lundgren+2014, ...

How do massive galaxies quench star formation at such early times?

see talks by e.g., Carollo, Wellons, Tacchella

What is "Quenching"?

act of suppressing SF maintaining low SF

low sSFR	this talk	
zero SF		

How do massive galaxies stop forming stars?

Springel+05, Hopkins+10, ...

Fiducial Model (Merger + AGN feedback)

- 1. gas-rich, equal mass merger between disk galaxies with SMBHs
- 2. tidal torques drive gas to the center of the galaxies / remnant
- 3. active quasar phase => blow out of gas
- 4. generated entropy may suppress cooling
- 5. stellar component forms bulge/elliptical

Most Massive Galaxy in Argo,

- z~4: star forming
- z~2: boundary SF/quiescent
- z~1: quiescent

Ideal for case study of how SF is suppressed

Evolution of the specific SFR

- on star formation sequence at z>3.5
- drops off the SF sequence at z~3.5

Evolution of the specific SFR

- on star formation sequence at z>3.5
- drops off the SF sequence at z~3.5

- the initial drop not caused by FB
- FB necessary to:
 - reduce SF to less than ~ few M_{\odot} yr⁻¹
 - suppress SF in central few 100 pc

Cosmic Starvation

Feldmann & Mayer 2014, arXiv:1404.3212

- gas & dark matter grow together
- at z~3.5 accretion within fixed physical radii stops

Cosmic Starvation

- accretion only at large radii
- SF runs out of gas => shuts down

N-body simulations (dark matter only)

- large fraction of DM halos shows initial growth followed by slow-down
- acknowledged in some contexts (e.g., halo concentration), e.g. Bullock+2001
- yet: somehow role in galaxy formation under-appreciated

Type IV

Type III

Type II

Type I

 $M_0 (M_{\odot})$

 10^{14}

 10^{15}

growth and shallow/no late growth

Diemand, Kuhlen, Madau 2007

R. Feldmann, UCSC Galaxy Workshop, Aug 2014

 10^{13}

McBride, Fakhouri, Ma 2009

~40%

1.0

0.8

Percent 90

0.4

0.2

0.0

Abundance matching

cosmological volume

dark matter halos (sim)

same cosmological volume

match number densities

correctly predicts galaxy clustering!

Conditional abundance matching

- Assumption: At fixed M* the SF shut-off time set by halo collapse time.
- correctly predicts how star forming (blue) and quiescent (red) galaxies cluster at z=0.
- may explain galactic conformity (see talk by Lilly)

Difference to the halo quenching picture

Probably work in combination!

Birnboim & Dekel 2003, Keres+2005, Dekel & Birnboim 2006, Cattaneo+2006, Ocvirk+2008, ...

Halo Quenching

- Gas accretion onto galaxy stalls once halo above mass threshold
- origin of bimodality at z < 1 ?
- working surface for radio mode AGN: suppresses hot gas cooling
- at z>2: cold streams

Cosmic Starvation

- not a hydrodynamical effect; tied to DM
- gas accretion onto the halo is reduced, not just onto the galaxy
- related to specific accretion rate, not halo mass
- does not shut down SF completely

Morphology of low & interm. mass galaxies at z>2

- 22 galaxies at z=3.4 with >10000 star particles
- peaked vs flat circular velocity profiles in halos of the same mass(!)

• "Peakedness" = $\frac{v_c(r_{\max})}{v_c(r_h)}$ radius where v_c peaks

Simple Disk/Total decomposition

B/T closely correlates with peakedness of vc-

peakedness vs mass

peakedness correlates poorly with Mvir, but well with M*

Origin of the peaked velocity curves

- 9 flat (peakedness < 1.25) VS 13 peaked (peakedness \ge 1.25)
- 8 peaked via >1:4 merger, 5 for other reasons

Origin of the peaked circular velocity curves

Jump in peakedness during merger & associated starburst

Role of Major Mergers

Major Mergers at z<1

- destroy disks, formation of ellipticals
- size growth
- binary merger simulations e.g. Toomre & Toomre 1972, Barnes 1988, Naab & Burkert 2003, Hopkins et al. 2013
- cosmological simulations

e.g. Naab+09, Feldmann+10, 11, Oser+10, 12, Navarro-Gonzales et al. 2014

Major Mergers at z>2

- growth of the bulge
- compaction (?), see talks by Barro, Zolotov, Wellons
- difference is the much larger gas fraction (here~10%-80%)
- major mergers of gas-rich galaxies re-build disk (Robertson+06, Hopkins+09)

Por Image: Sector Image: Sector

Hubble sequence in a cosmological simulation

Feldmann, Carollo, & Mayer 2011

Quenching of massive z>2 galaxies:

• alternative to the standard (major merger + gas blow out) paradigm

Summary

- cosmic starvation reduces gas accretion, SF reduced to below MS
- to completely shut down SF require add. physics, e.g., radio mode AGN + hot halo (halo quenching)
- arises naturally from huge variability in halo accretion histories
- add. circumstantial evidence: age matching

Morphology of low mass z>2 galaxies:

- \bullet morphology correlates well with M*, not M_{vir}
- large B/T ratio primarily acquired in major mergers
- secular processes, minor mergers, flybys secondary importance

Add-on: Global galaxy properties agree with observations

- stellar mass to virial mass ratio in agreement with abundance matching at $z \le 4$
- stellar fraction ~ constant, slight increase (x2) during mergers
- size ~ 1 kpc at z~2; consistent with sizes of massive, quiescent galaxies