Tracking the Assembly of Galaxies' with Morphology

Jennifer Lotz - STScl

with Mike Peth, Alireza Mortazavi, Greg Snyder, CANDELS team

Summary

Galaxy "morphology" can trace underlying physics of galaxy evolution, but need to capture rare/subtle features

Hubble Sequence does not apply so well at high redshift
\Rightarrow need to move beyond "disk", "spheroid", "other" to make progress

PCA of G-M ${ }_{20}$-CA-MID at $z>1$, Mstar >10.5

- finds structural progenitors of today's large E/SO;
- rare, star-forming and massive at $z>2$;
increase rapidly after $z<1.5$, before decline of compact quenched galaxies
- consistent with multiple formation pathways, including (re)growth of disks around compact galaxies

evolution of Hubble Sequence with redshift

Tracking "the evolution of the Hubble Sequence" is key science goal for JWST
but... Roger Davies: "The Hubble Sequence is wrong" (at z=0) Bob Abraham: "The Hubble Sequence disappears" (at high z)

evolutionary paths of high-z galaxies

tracking major mergers, minor mergers, VDI/clumps requires measuring more than Hubble types and Sersic fits

Barro et al. 2014

evolutionary paths of high-z galaxies

van Dokkum et al.
direct evidence for z~1-2 dry minor mergers?

UDS proto-cluster at $z=1.62$

20 sigma over-density of IRAC z>1.4 galaxies;
>15 spectroscopic members, clear red sequence $\sigma \sim 360 \mathrm{~km} / \mathrm{s} ; \mathrm{M}_{200} \sim 9 \times 10^{13} \mathrm{Msun}$ (if virialized)

Papovich et al. 2007, 2010; Tanaka et al 2010

Massive Elliptical Galaxy Assembly via Mergers

$$
\begin{gathered}
\mathrm{f}_{\text {pair }}(\text { cluster }) \sim 40-80 \% \quad \text { v. } \mathrm{f}_{\text {pair }}(\text { field }) \sim 5 \% \\
\left(>3 \times 10^{10} \mathrm{M}_{\text {sun }} ; 1: 1-1: 10 ; \text { Rproj }<20 \mathrm{kpc} \text { comoving }\right)
\end{gathered}
$$

\Rightarrow proto-cluster galaxy merger rate >> z~1.6 UDS field galaxy merger rate
Lotz et al. 2013 (also Rudnick et al. 2012, Papovich et al. 2012)

evolutionary paths of high-z galaxies

van Dokkum et al.
\checkmark direct evidence for z~1-2 dry minor mergers

evolutionary paths of high-z galaxies

Snyder et al. 2014

gini-m20 $\quad z=0$

New (better) way to find z~2 Mergers

Freeman et al. 2013
new statistics M-I-D examine the ratios of
area (M), intensity (I) and the distance (D) between 1st and 2nd brightest clumps

Relative Statistic Importance: H Band

beats $\mathrm{G}-\mathrm{M}_{20}$, CAS at finding CANDELS visually classified mergers for WFC3/H < 24 galaxies

Beyond the Hubble Sequence

gini-m20 $2.5<z<3.0 \quad$ Mstar >10.5

Lotz, Peth et al., 2014

gini-m20 $2.0<z<2.5 \quad$ Mstar >10.5

gini-m20 $1.5<z<2.0 \quad$ Mstar >10.5

gini-m20 $1.0<z<1.5 \quad$ Mstar >10.5

gini-m20 $0.6<z<1.0 \quad$ Mstar >10.5

"type 4" are structural progenitors of today's large E/S0 emerge at $\mathrm{z}<2$

gini-m20 $2.0<z<2.5 \quad$ Mstar >10.5

UVJ $\quad 2.5<\mathrm{z}<3.0$ Mstar >10.5

from Lotz, Peth et al in prep, CANDELS team photometry

UVJ $\quad 2.0<z<2.5 \quad$ Mstar >10.5

"type 4" quench at $\mathrm{z}<2$
"type 0" start quenching early ($z>3$)

UVJ $\quad 1.5<z<2.0 \quad$ Mstar >10.5

"type 4" quench at $\mathrm{z}<2$
"type 0" start quenching early ($z>3$)

UVJ $1.0<z<1.5$ Mstar >10.5

"type 4" quench at $\mathrm{z}<2$
"type 0" start
quenching early ($z>3$)

UVJ $\quad 0.6<z<1.0 \quad$ Mstar >10.5

"type 4" quench at $\mathrm{z}<2$
"type 0" start
quenching early ($z>3$)

stellar masses $\quad 2.5<\mathrm{z}<3.0$

"type 4" dominate massive galaxies at z<1.5

stellar masses $\quad 2.0<z<2.5$

stellar masses $\quad 1.5<z<2.0$

"type 4" dominate massive galaxies at z<1.5

stellar masses $\quad 1.0<z<1.5$

stellar masses $\quad 0.6<z<1.0$

"type 4" dominate massive galaxies at z<1.5

sSFR v. $\Sigma_{1.5} \quad 2.5<z<3.0 \quad$ Mstar >10.5

reff from Van der Wel et al 2014; sSFR from Lotz et al in prep (FAST -SED fitting)

sSFR v. $\Sigma_{1.5} \quad 2.0<z<2.5$

"type 4" formation consistent with both quenching of disks (type 1, 2, 3) and mergers of compacts (type 0)

sSFR v. $\Sigma_{1.5} \quad 1.5<z<2.0$

"type 4" formation consistent with both quenching of disks (type 1, 2, 3) and mergers of compacts (type 0)

sSFR v. $\Sigma_{1.5} \quad 1.0<z<1.5$

"type 4" formation consistent with both quenching of disks (type 1, 2, 3) and mergers of compacts (type 0)

sSFR v. $\Sigma_{1.5} \quad 0.6<z<1.0$

"type 4" formation consistent with both quenching of disks (type 1, 2, 3) and mergers of compacts (type 0)

Evolution of massive galaxies $0.6<z<3.0$

Evolution of massive galaxies $0.6<z<3.0$

Evolution of massive galaxies $0.6<z<3.0$

evolutionary paths of high-z galaxies

evolutionary paths of high-z galaxies

evolutionary paths of high-z galaxies

Snyder et al. 2014

evolutionary paths of high-z galaxies

evolutionary paths of high-z galaxies

Summary

Galaxy "morphology" can trace underlying physics of galaxy evolution, but need to capture rare/subtle features

Hubble Sequence does not apply so well at high redshift
\Rightarrow need to move beyond "disk", "spheroid", "other" to make progress

PCA of G-M ${ }_{20}$-CA-MID at $z>1$, Mstar >10.5

- finds structural progenitors of today's large E/SO;
- rare, star-forming and massive at $z>2$;
increase rapidly after $z<1.5$, before decline of compact quenched galaxies
- consistent with multiple formation pathways, including (re)growth of disks around compact galaxies

