Evolution of Giant Clumps in High *z* **Disc Galaxies**

Nir Mandelker, H.U.J.I.

UCSC Galaxy Workshop, August 13 2014

<u>Collaborators</u>: Avishai Dekel, Daniel Ceverino, Frederic Bournaud, Yicheng Guo, Chris Moody, Joel Primack

What Do We Know About Clumpy Discs? Many SFGs at z~2 exhibit clumpy morphology Robust in both observations and simulations

Cowie+ 95 van den Bergh 96 Elmegreen+ 04, 05 Forster Schreiber+ 06, 11 Genzel+ 08, 12 Jones+ 10 Guo+ 12 Wisnioski+ 12

Ceverino+ 10 Agertz+ 09 Bournaud+ 06, 08, 13 Genel+ 12 Ceverino, Dekel, **N. Mandelker**+ 12 **N. Mandelker**+ 14

What Do We Think We Know About Clumpy Discs?

High gas fractions cause giant clumps to form in situ in the disc through VDI

Toomre 64 Noguchi 99 Immeli+ 04 Bournaud+ 06, 08 Dekel+ 09, 13 Krumholz+ 10 Genel+ 12 Cacciato+ 12 Forbes+ 12, 13 Ceverino, Dekel, **N. Mandelker**+ 12

$$Q \propto \frac{\sigma \Omega}{G\Sigma} \le 1$$

$$R_{\rm clump} \propto \frac{G\Sigma}{\Omega^2}$$

Is it really Toomre? (talks by Burkert, Inoue, Dekel) Clumpy discs may also be merging systems Clumps should survive feedback, migrate to the center and Krumholz, Dekel 2010 Dekel, Krumholz 2014 form a bulge Bournaud+14 N. Mandelker+14 Clumps should not survive feedback, destroyed in t_{dyn} Manuray+10 Genel+12 Hopkins+13

What Would We Like to **Know About Clumpy Discs?** What is the fraction of clumpy discs as a function of disc mass / redshift? How many of the clumps were formed through VDI? What is the origin of instability? Can these be distinguished from mergers? Do clumps survive feedback and migrate to the disc center? Do they contribute to bulge formation?

Clump Survival

Clump Disruption?

Winds cause clumps to disrupt in a dynamical time. Without winds, clumps migrate

A Bathtub Model for Clump Evolution

Dekel, N. Mandelker, Bournaud 2014 (in prep)

Toomre

Mass

from t

A Bathtub Model for Clump Evolution

Dekel, N. Mandelker, Bournaud 2014 (in prep)

<u>Star formation</u> $\epsilon_{SF} \sim 0.02, t_d \geq 3t_{ff}$

$$t_{SFR} \approx \epsilon_{SFR}^{-1} t_{ff} \approx 30 t_{dyn} \approx 3 t_{mig}$$

<u>Momentum driven outflows –</u>

a steady wind, with minimal photon trapping Krumholz & Thompson 2012, 2013; Dekel & Krumholz 2014 Consistent with Genzel+ 2012; Newman+ 2013

$$\dot{p}_w \approx 3 L/c \rightarrow \eta \approx 1-2$$

$$t_{out}\approx\eta^{-1}t_{SFR}\approx(1-2)t_{mig}$$

$$t_{mig} \approx t_{acc} \leq t_{out} \leq t_{SFR}$$

A Bathtub Model for Clump Evolution

Dekel, N. Mandelker, Bournaud 2014 (in prep)

At any η , mass varies by less than factor 2

For $\eta \sim 2 - 4$, mass is ~ constant $\eta \ll 1$, mass grows by factor ~2 $\eta \gg 1$, mass goes to 0 (robust)

For $\eta < 4$ gas fraction ~ constant (sensitive to t_d/t_{ff})

Isolated Disc Simulations with RAMSES

Dekel, N. Mandelker, Bournaud 2014 (in prep)

Simulations by Bournaud+ 2014

- Maximal AMR resolution of 3.5 pc
- Galaxy baryonic masses of $4 \times 10^{10} 4 \times 10^{11} M_{\odot}$
- 60% gas fraction

Zoom in Cosmological Simulations with ART

Kravtsov+ 1997, 2003; Ceverino+ 2009, 2010, 2014

~30 pairs of simulations with identical ICs

Halo masses of $10^{11} - 10^{12} M_{\odot}$ at $z \sim 1$

Maximal AMR resolution of ~25 pc

Thermal feedback from stellar winds and SNae - no shutdown of cooling, ~30% runaway stars

Run with and without radiation pressure feedback with $\tau_{IR} = 1$ Produces $\eta \sim 2 (0.2 - 10)$ globally

3D clump finder (Mandelker+ 14) run on both gas and stars Outputs every ~100 Myr, clumps tracked by stellar particles

Gas disc expands, bulge may loose gas, giant clumps survive, small clumps disrupt

VELA15 z~4.6

N. Mandelker + 14, in prep Nir Mandelker, UCSC Galaxy Workshop, August 13 2014 12

Gas disc expands, bulge may loose gas, giant clumps survive, small clumps disrupt

VELA07 z~2.8

N. Mandelker + 14, in prep Nir Mandelker, UCSC Galaxy Workshop, August 13 2014 13

Moody, Guo, N. Mandelker+ 14 N. Mandelker + 14, in prep

Small clumps disrupt Giant clumps survive

Small clumps disrupt

Giant clumps survive

Evolution of Massive Clumps

Measure typical values for η , α , ϵ_{sf} , t_d/t_{ff} , f_{g0} and stellar tidal stripping

Clumps above $10^8 M_{\odot}$ that survive longer than 200 Myr

Gradients of Massive Clumps

N. Mandelker+ 14 MNRAS in press; N. Mandelker+ 14 in prep

<u>IN-SITU:</u> Closer to the disc center, clumps are older and with lower sSFR (i.e. redder).

Age gradient <u>much steeper</u> than the background disc.

Only very weak mass gradient

<u>EX-SITU:</u> Gradients much weaker. Age and sSFR simillar to local disc \rightarrow May hide overall clump gradient.

Old clumps with low sSFR in the outer disc \rightarrow *Ex-Situ*.

Observed Gradients - Evidence for Clump Survival

Forster Schreiber+ 11

Guo+ 12

Ex Situ Massive Clumps in RP Simulations

Clumpy Fraction of Discs

Disc Clumpiness

$10.6 > \log(M_*) > 9.0$

60% of discs are clumpy ~2 clumps per galaxy ~0.5-3% of the disc mass ~1-30% of the disc SFR

Mandelker+ 14 in prep

Nir Mandelker, UCSC Galaxy Workshop, August 13 2014

Summary and Conclusions

Violent Disc Instability (VDI) by intense gas inflow and high density

- In situ giant clumps and transient features form, ex situ clumps merge
- Small clumps disrupt due to feedback
- Massive clumps survive a steady wind with $\eta \sim 1$ and keep roughly constant mass
- Gradients in age and color due to migration and accretion from the disc No mass gradient
- Ex situ clumps are ~15% in number, ~35% in SFR and ~50% in mass
- In situ younger, higher sSFR + gas fraction (bluer), lower mass + metallicity than ex-situ clumps
- ~ half the galaxies are clumpy, with \leq 30% SFR in the clumps in broad agreement with observations

THANK YOUN