Disc instability analyses
for high-z Clumpy galaxies

m simulations

Shigeki Inoue

the Hebrew University of Jerusalem

W.Vishai ['El,
e imh/rridelker,
Danicinfammprino,

This research was supported by a grant Frederiﬂurnaud,
from the Hayakawa Satio Fund awarded

by the Astronomical Society of Japan. Wel P-



Clumpy disc galaxy
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Toomrlwstability in hig-discs
* Toomrlnstability criterio‘
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Toomrlwstability in hig-discs
. Toomrl\stability criterio‘
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¢ In observatio h-z galaxies indicate Q<1 in entire disc regions.

e Toomre instability gives birth to clumps.
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o What about Toomre Q in simulations?

Dekel, Sari & Ceverino (2009)

o from the cosmological simulations
o RENN e , 2013) using ART code

> 10pc-ordeggigsolution with radiation pressure.

¢ Cosmological simulations are always non-linear.
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How to compute Toomre’.
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e o is radial velocity dispersions of gas/star.
C I‘ calculated from mean velocity fields of gas/star.
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e Stars younger than 10.[yr are considered to be “gas “
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e Bulge stars are removed ; lﬁ ¥ oM

e Gaussian smoothing is ﬁlied to all physical quantities.
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Results

The clumpy disc seems stable
against Toomre instability...

2-component model
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Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
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White: imaginary k (Q cannot be defined)



Results

The clumpy disc seems stable
against Toomre instability...

gas density 2-component model
L1
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Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
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o the same galaxy

o at redshift z=1.Ji The clumpy disc seems stable
against Toomre instability...

2-component model

Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
Yellow, Q>3: st® hte
White: imaginary k (Q cannot be defined)



o the same galaxy

o at redshift z=1.Ji The clumpy disc seems stable
against Toomre instability...

gas density 2-component model
2

Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
Yellow, Q>3: st® hte
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A case of the lowesﬂ i




o What about Toomre Q in isolated simulation'
H R -

Bournaud et al. (2014)
oyrom th@ilolated simulatio

. mchtd)lél) using :!/ISES code

> lpc-ordes=sesdlution with radiation pressure.
I Inititially, an exponential disc with a bulge in a halo.



o the isolated galaxy

The clumpy disc seems stable
against Toomre instability...

gas density

Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
Yellow, Q>3: st® hte
White: imaginary k (Q cannot be defined)




o the isolated galaxy

The clumpy disc seems stable
against Toomre instability...

gas density

109 Qcomp log Zgqs [Mg pC]

Q<1: linear instability, (Q=1-3: non-linear and/or dissipative instability
Yellow, (@ CHI... hte

White: imaginary k (Q cannot be defined)



o the isolated galaxy
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o the isolated galaxy

The clumpy disc seems stable
against Toomre instability...
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Overestimate?

¢ Disc thicknes.

e Thickness can stabilizc; a disc, but we did not apply

thickness coLgaakia .
e S0, our results would still bInderestimating CI

¢ How to determine x|}

e kK was determined from mean rotation vel. of star/gas.
o fmmmmer vel. is also often used. :
' e But, generally the mean mgration leads to lower '2

¢ How does a bulge affect?

e Bulge stars were removed from our analyses.

o Incluseammiiwebulge can increase Q b'i)% at the largest.



Conclusion 1

* Higl.observations for clumpy discs have shown Q<1.
+ However, numerical simulations indicate typically Q>1.

¢ Probably...
e Observations are overestimating gas density...?

> Gas density was Convert%Ha uﬁel et al. (2011 2014)

/A

. o Simulations are not compatible with the real galaxies...?
> ﬂimulations have lower gas fraction and SFR than the observations.



Conclusion.

¢ Clumpy discs indicate Q>1 in our simulationg

¢ But, actually clumps are forming in the disc

o regardless of cosmological/isolated 51mu1at1o

. Probabl‘..
e riterion of Q=1 may not be accurate.
> Fo , Tme a ssumes axisymmetric perturbation.

and/or
e Clump formation may be triggered by external stimuli.

| > We and/or turbulence, etc...?



Summagy

¢ The clumpy n"®e and Mmation of giant clumps in

hi ﬁ mv cen thought to be triggered by
ﬁrrent observations suppo'l

" simulations, however, Q>1 in disc regions.

o lervatlons may be overestimating gas densities?
. -m-ﬂl cam*roduc“lames?

eIn th.n.Q<1 can be seen only inside and around clumps.
%ﬂenon of Q=1 may not be accurat e

C t cliJmps may not be purely due to
Toomre 1

> Maybe due to t1dal force and/or turbulence, etc...




