You Can't Always Get What You Want: Making Sense of Observable Tracers of Gas and Star Formation

Mark Krumholz (UCSC)
Collaborators: Robert da Silva (UCSC), Michele Fumagalli (Durham), Michelle Myers (UCSC), Desika Narayanan (Haverford), Teddy Rendahl (UCSC), Todd Thompson (OSU)

The Problem

The Problem

What we would like to do...

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

What we can usually do...

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

What we can usually do...

- Measure 21 cm and CO J=1-0 or 2-1 (at low z), or CO J>4 (at higher z); infer H_{2}

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

What we can usually do...

- Measure 21 cm and CO J=1-0 or 2-1 (at low z), or CO J>4 (at higher z); infer H_{2}
- (Maybe) measure HCN, HCO+; infer H_{2} at higher density

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

What we can usually do...

- Measure 21 cm and CO J=1-0 or 2-1 (at low z), or CO J>4 (at higher z); infer H_{2}
- (Maybe) measure HCN, HCO+; infer H_{2} at higher density
- Measure ionization proxy (e.g., H α, OIII), or FUV or IR luminosity; infer SFR

The Problem

What we would like to do...

- Measure the HI and H_{2} surface density and volume density in a bunch of galaxies
- Measure the star formation rate in the corresponding areas and volumes
- Plot the relationship between the two measured quantities for galaxies of different types and at a range of redshifts

What we can usually do...

- Measure 21 cm and CO J=1-0 or 2-1 (at low z), or CO J>4 (at higher z); infer H_{2}
- (Maybe) measure HCN, HCO+; infer H_{2} at higher density
- Measure ionization proxy (e.g., H α, OIII), or FUV or IR luminosity; infer SFR
- Plot what we can and pray

Why CO to H_{2} is a Problem

Daddi+ 2010

Why is High-J CO a Problem

All CO detections at z>1 (circa 2013, Carilli \& Walter 2013)

All z > 1 SMGs for which CO $\mathrm{J}=1-0$ has been measured (circa 2014, Narayanan \& Krumholz 2014)

Why lonization-Based SFRs are a Problem

CO Emission: 30 sec Tutorial

- Low-J CO almost always optically thick \Rightarrow
$W_{\text {CO }} \approx T_{\text {kin }} \sigma$
- Related to CO mass via virial thm: $\sigma \sim(\text { alvir } G M / R)^{1 / 2}$ $\sim N_{H}\left(\mathrm{aG} / \mathrm{n}_{\mathrm{H}}\right)^{1 / 2}$
- Thus $W_{c o} \sim N_{H} X_{c o}$ with $X_{C O} \sim\left(a_{\text {vir }} G / n_{H}\right)^{1 / 2} T_{\text {kin }}$
T_{B}

- Constant $X_{c o}$ only if $\left(\mathrm{a}_{\text {vir }} / \mathrm{n}_{\mathrm{H}}\right)^{1 / 2} \mathrm{~T}_{\text {kin }} \sim$ constant

Steps Toward a Theoretical Model of CO Emission

1. Need distribution of gas and star formation: GADGET simulations of isolated, merging galaxies (Narayanan+ 2011)
2. Self-consistently compute dust temperature: postprocess with SUNRISE (Jonsson 2006, Jonsson+ 2010)
3. Compute gas chemical state $\left(\mathrm{H}_{2}, \mathrm{CO}\right.$ abundance) w/ equilibrium chemical models (Krumholz+ 2008, 2009; Wolifire+ 2010)
4. Solve for gas temperature, CO excitation ladder, CO emissivity with DESPOTIC (Kumholz 2014)

Example: Disk and Merger

Nayanan+ 2011:

- Top: Wco vs. position in disk and merger simulations
- Bottom: Xco vs. position in the same simulations

Application to Observations

- From simulation library, best correlation of $X_{c o}$ with another observable is with Wco

- Fitting formula: $X_{c o l} / 10^{20} \approx$ $\min \left[4,6.75 \times\left\langle\mathbf{W}_{\text {co }}\right\rangle^{-0.32}\right]$ (Narayanan+ 2011, 2012)

Updated KS plot with

Narayanan+ 2012 fitting formula
for XCO (Thompson \& Krumholz 2014)

Extension to High-J Lines

Need to worry about:

1. Gas temperatures: must be warm enough to excite the line
2. Gas density: must be dense enough to thermalize high J states
3. Column density: must be opaque enough for line to saturate

$\rho-T$ PDFs with CO level temperatures, critical densities overlaid in a quiescent disk (left) and a merger (right) (Narayanan \& Krumholz 2014)

Comparison to Observed CO SLEDs

High nerits, Low T lines

- SFR is a fixed mass fraction per free-fall time, so for density $n, S F R \propto L_{I R} \propto n^{3 / 2}$
- Line luminosity depends on mass above $n_{\text {crit }}$
- Low $n_{\text {crit }}$ (e.g. CO 1-0) lines give Lline . \mathbf{n}^{1}
- High $\mathrm{n}_{\text {crit }}$ (e.g. HCN 1-0) lines give Lline $\propto \mathrm{n}^{\mathrm{p}}, \mathrm{p}>1$
- $\Rightarrow L_{I R} \propto L_{\text {line }}{ }^{q}, q \sim 3 / 2$ for low $n_{\text {crit, }} q<3 / 2$ for high $n_{\text {crit }}$

High neritit Low T lines

- SFR is a fixed mass fraction per free-fall time, so for density $n, S F R \propto L_{I R} \propto n^{3 / 2}$
- Line luminosity depends on mass above $n_{\text {crit }}$
- Low $n_{\text {crit }}$ (e.g. CO 1-0) lines give Lline $\propto \mathbf{n}^{1}$
- High $n_{\text {crit }}$ (e.g. HCN 1-0) lines give Lline $\propto n^{p}, p>1$
- $\Rightarrow L_{I R} \propto L_{\text {line }}{ }^{q}, q \sim 3 / 2$ for low $n_{\text {crit }} \mathrm{q}<3 / 2$ for high $n_{\text {crit }}$

High neritit Low T lines

- SFR is a fixed mass fraction per free-fall time, so for density $n, S F R \propto L_{\mathbb{R}} \propto n^{3 / 2}$
- Line luminosity depends on mass above $n_{\text {crit }}$
- Low $n_{\text {crit }}$ (e.g. CO 1-0) lines give Lline $\propto \mathbf{n}^{1}$
- High $n_{\text {crit }}$ (e.g. HCN 1-0) lines give Lline $\propto \mathrm{n}^{\mathrm{p}}, \mathrm{p}>1$
- $\Rightarrow L_{I R} \propto L_{\text {line }}{ }^{q}, q \sim 3 / 2$ for low $n_{\text {crit, }} \mathrm{q}<3 / 2$ for high $n_{\text {crit }}$

High nerits, Low T lines

- SFR is a fixed mass fraction per free-fall time, so for density $n, S F R \propto L_{I R} \propto n^{3 / 2}$
- Line luminosity depends on mass above $n_{\text {crit }}$
- Low $n_{\text {crit }}$ (e.g. CO 1-0) lines give Line $\propto \mathbf{n}^{1}$
- High $n_{\text {crit }}$ (e.g. HCN 1-0) lines give Lline $\propto n^{p}, p>1$
- $\Rightarrow L_{I R} \propto L_{\text {line }}{ }^{q}, q \sim 3 / 2$ for low $n_{\text {crit }} \mathrm{q}<3 / 2$ for high $n_{\text {crit }}$

High neritis Low T lines

- SFR is a fixed mass fraction per free-fall time, so for density $n, S F R \propto L_{I R} \propto n^{3 / 2}$
- Line luminosity depends on mass above $n_{\text {crit }}$
- Low $n_{\text {crit }}$ (e.g. CO 1-0) lines give Lline $\propto \mathbf{n}^{1}$
- High $n_{\text {crit }}$ (e.g. HCN 1-0) lines give Lline $\propto n^{p}, p>1$

- $\Rightarrow L_{I R} \propto L_{\text {line }}{ }^{q}, q \sim 3 / 2$ for low $n_{\text {crit, }} \mathrm{q}<3 / 2$ for high $\mathrm{n}_{\text {crit }}$

Observations of High norit Lines

Krumholz \& Thompson 2007

Line Emission: Next Steps

- Embed the Narayanan et al. numerical results within an analytic model for the full ρ-T PDF
- Use that plus a grid of DESPOTIC models to predict full line spectrum of galaxies as a function of gas surface density, SFR, chemical abundance
- Compare to growing library of Herschel and ALMA observations

Ionization-Based SFR Tracers

- Many SFR tracers sensitive to ionizing radiation from massive, short-lived stars
- Problem: massive stars have short lifetimes, and from in temporally-correlated clusters
- Result: lots of variation in total ionizing luminosity even at fixed mean SFR
- Amount of fluctuation depends on choice of tracer

The Solution: SLUG!

Stochastic SFR Indicators

From observations: p(log L | data)

SLUG gives us: $p(\log L \mid \log S F R)$

Prior gives us: p(log SFR)

We want: p(log SFR | data)
da Silva+ 2014

Bayesian SFRs

From prior From SLUG

- $p(\log S F R, \log L)=p(\log S F R) \times p(\log L \mid \log S F R)$
- ... but p(\log SFR, $\log \mathrm{L})=p(\log \mathrm{~L}) \times \mathrm{p}(\log \operatorname{SFR} \mid \log \mathrm{L})$
- So p(log SFR | data) =

From integrating
What we want
From observation
$\int[p(\log S F R, \log L) / p(\log L)] p(\log L \mid d a t a) d \log L$ From SLUG + prior

Bayesian SFRs

- p(log SFR, lo
- ... but p(log
- So p(log SFF

SLUG $\log \mathrm{SFR})$ SFR | $\log \mathrm{L})$
What we want
vation ata) $d \log L$

So How Bad Is It?

da Silva +2014

In Progress l: Stochasticity in Other Indicators

- Generate stochastic spectra w/SLUG
- Pipe through CLOUDY to get nebular emission
- Result: stochastic nebular lines (senior thesis, Teddy Rendahl)

SLUG spectra, 1000 M。cluster

In Progress l: Stochasticity in Other Indicators

- Generate stochastic spectra w/SLUG
- Pipe through CLOUDY to get nebular emission
- Result: stochastic nebular lines (senior thesis, Teddy Rendahl)

Stochastic line ratio distributions

In Progress II: Bayesian Star Cluster Properties

- Extend technique for SFRs to > 2 dimensions
- Produce PDFs of star cluster mass, age vs. photometry in multiple filters
- Apply to LEGUS cluster catalog

