

UNITED KINGDOM · CHINA · MALAYSIA

OMEGA OSIRIS MAPPING OF EMISSION-LINE GALAXIES IN A901/902

Ana Chies-Santos, Bruno Rodríguez Del Pino Alfonso Aragón-Salamanca, Steven Bamford and Meghan Gray

Environmental dependence of **Star Formation** and **AGN** activity using the optical lines H α and [N II].

GOALS

Environmental dependence of **Star Formation** and **AGN** activity using the optical lines H α and [N II]. What do H α and [N II] tell us? **Star formation** H α flux \propto Star Formation Rate (Kennicutt 1998)

GOALS

Star formation Hα flux ∝ Star Formation Rate (Kennicutt 1998)

Baldwin, Philip & Terlevich 1981

GOALS

Star Formation

- ➡ SFRs down to 0.1 solar mass/yr.
- Role of obscured/unobscured SF (UV, IR).
- Concentration of the star-forming regions, resolution down to 3kpc in 1" seeing.

AGN activity

Low-luminosity AGN with no X-Ray emission.

...one of the several inventions of Humanity named **OSIRIS**...

OSIRIS ... Egyptian god of afterlife, the underworld and the dead...

British Museum

OSIRISalso the name for (4+) astronomical instruments...

British Museum

 Optical System for Imaging and low-Intermediate-Resolution Integrated
 Spectroscopy (OSIRIS) at the
 GRANTECAN

OSIRIS is a near-infrared integral field spectrograph designed for the Keck Adaptive Optics System

 The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) is the main imaging system of the Rosetta mission.

The Ohio State InfraRed Imager/ Spectrometer (OSIRIS) is a multipurpose infrared imager & spectrometer built by the Ohio State University for SOAR.

OMEGA

- ➡ 90 hours at GTC (10.4 m) <u>COMPLETED</u>
- tunable filter mode.
- OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy).

narrow band image

GTC in La Palma (Spain)

OSIRIS instrument

z=0.165

COMBO-17 image

0.5 degrees

0.5 degrees

A901a

STAGES: Space Telescope A901/2 Galaxy Evolution Survey (Gray et al. 2009)

	Hubble Space Telescope	80-orbit mosaic morphologies, weak gravitational lensing
	COMBO-17 survey	17-band optical imaging: photo-zs, + SED fir 15000 objects
	Omega2000 @ Calar Alto	near-infrared extension (Y, JI, J2, H): M*, photo-zs
2dF	2dF spectrograph	spectroscopy of ~300 cluster galaxies: dynamics, star-formation histories
	XMM-Newton	90 ks X-ray imaging/spectroscopy: ICM,AGN
USPITZER	Spitzer	infrared imaging (8 and 24 μm): obscured star formation, AGN
Contraction of the second seco	GALEX	NUV + FUV imaging: unobscured star formation
	GMRT	radio imaging (610 and 1400MHz) obscured SF, AGN
	simulations	N-body + hydro + semi-analytic models dark matter, gas, galaxies

Tunable filter

Wavelength dependence with distance to centre: $\lambda = \lambda_0 - 5.04 \times r \text{ (arcmin)}^2 \qquad (\lambda_0 \longrightarrow \text{ central } \lambda)$

➡ To optically deblend Ha and [N II]:

- ➡ Tunable filter FWHM bandwidth =14Å
- \Rightarrow Spacing between successive wavelengths = 7Å

F2-20 (16 settings)

F21 (14 settings)

F22 (12 settings)

Redshift distribution of the 300 brightest cluster galaxies within 1.2 Mpc diameter aperture (+/- 2000 km/s) from 2df data.

- 3 OBs:
 4 λ sets (spaced by 7Å):
 - 3 dithered images (200s)

Total = 36 images

Data Reduction

Data Reduction

After OOPSing

BUILDING THE SPECTRA

Aperture photometry

Rcen (matching the seeing)

Spectral modelling

Spectral modelling

Hα [N II] Bruno Ana

Bruno Rodríguez del Pino

➡ Great PhD student, on the job market!

Spectral modelling part of this work MCMC

Ηα [N II] Bruno

Ana

Spectral modelling Model of **3 Gaussians** + continuum (total of 6

parameters):

 $\Rightarrow Flux_{[N II]b} = 3.06 \times Flux_{[N II]a}$

Parameter space is explored using Markov Chain Monte Carlo (MCMC) techniques.

Results!

....F21 and F22, 2/20...

Detections

142 objects with $H\alpha$ detection

79 objects with H α + NII

AGN vs. SF census

WHAN

Chies-Santos+14 to be submitted

79 objects: 23 Star-forming 10 AGN

Spatial Distribution

Morphology

Mass and m_R

Suppression of SF!

SFR vs. Stellar Mass:

Ha Luminosity Function

Chies-Santos+14 to be submitted

GAMA H α Luminosity Function (Gunawardhana et al. 2013)

THE END THANK YOU

Analysis of 2 out of 20 Fields

- Full AGN census and integrated Star Formation properties 20 Fields
- Size of SF regions from Hα maps and its dependence with environment.

work in progress

STAY TUNED FOR Chies-Santos+14

Rodriguez del Pino, Chies-Santos et. al. +14