See: Mathes et al. 2014 (arXiv:1406.2314; ApJ accepted)

Halo Mass Dependence of HI Absorption: Differential Kinematics

Nigel L. Mathes¹

Christopher W. Churchill¹, Glenn G. Kacprzak², Nikole M. Nielsen¹, Sebastian Trujillo-Gomez³, Jane C. Charlton³, and Sowgat Muzahid³

¹New Mexico State University, ²Swinburne University of Technology, ³University of Zurich Institute for Computational Science, and ⁴The Pennsylvania State University

Introduction

- We need to discover the origin and life cycle of halo gas in order to learn how galaxies evolve
- Building a worthy sample involves imaging and identifying galaxies in the fields of background quasars

Nidever et al. 2010

Observing the Gas

1000

Analyzing the Data

Model galaxy in WFPC2 images

- Halo Mass
- On-sky orientation
- Inclination

Voigt Profile analysis of COS spectra

- Column density
- b parameter
- Component velocity

Relate galaxy and absorption properties

• Full 2-D picture of absorbing gas around galaxies

A 2-D View of Galaxy Halos

Gas Kinematics

Differential Kinematics

Differential Kinematics

Differential Kinematics

The fraction of bound HI absorbing clouds decreases as

 D/R_{vir} increases AND as halo mass decreases

Table 4 Bound Fractions of H1 Clouds			
(1)	(2)	(3)	(4)
$D/R_{ m vir}$	all $M_{\rm h}$	$M_{\rm h} > 10^{11.5}$	$M_{\rm h} < 10^{11.5}$
range	[M _☉]	$[M_{\odot}]$	$[M_{\odot}]$
$0 < D/R_{\rm vir} \le 1$	$0.85^{+0.08}_{-0.13}$	$0.94\substack{+0.05\\-0.12}$	$0.33^{+0.41}_{-0.28}$
$1 < D/R_{\rm vir} \leq 2$	$0.54^{+0.17}_{-0.17}$	$0.67^{+0.21}_{-0.28}$	$0.43^{+0.25}_{-0.22}$
$2 < D/R_{\rm vir} \leq 3$	$0.11\substack{+0.21\\-0.09}$		$0.11\substack{+0.21 \\ -0.09}$
$0 < D/R_{\rm vir} \le 3$	$0.59\substack{+0.09 \\ -0.09}$	$0.87^{+0.07}_{-0.11}$	$0.26^{+0.14}_{-0.11}$

$\Delta v > v_{esc}$ Gas Traces Outflows

Trujillo-Gomez et al. 2014 (in prep)

Theoretical Implications: Stellar/Halo Mass Relation

Behroozi et al. 2010

Theoretical Implications: Mass-Metallicity Relationship

Tremonti et al. 2004

See: Mathes et al. 2014 (arXiv:1406.2314; ApJ accepted)

Conclusions

- ↔ Low mass galaxies have a higher fraction of escaping clouds at all D/R_{vir}.
- CR Lower mass galaxies expelling more of their gas has implications in:
 - ∞ The stellar mass halo mass relationship
 - ∞ The mass ISM metallicity relationship

Comparing to Models

One dimensional plane-parallel outflow models

1.) Constant outflow velocity v_w

2.) Random wind velocity $0 < v_w < v_{max}$

3.) vzw wind model of Oppenheimer et al. 2010

Modeling Conclusions

○ The constant wind and vzw models have a difficult time reproducing the data

- The galaxy potential appears to govern the life cycle of halo gas