Quenching Quandaries in the MgII Circumgalactic Medium

Nikole Nielsen

Santa Cruz Galaxy Workshop August 11, 2014

Collaborators: C. Churchill (NMSU) G. Kacprzak (Swinburne) M. Murphy (Swinburne) S. Trujillo-Gomez (Zurich)

Circumgalactic Medium

- Large reservoir of multiphase gas
- Fuel for star formation
- Massive (e.g., Werk 2013)
- MgII absorption in background QSO spectra
- Accretion along dark matter filaments
 - e.g., Rubin 2012
- Outflows from SN feedback/stellar winds
 - e.g., Bouche 2012
- Merging satellite galaxies
- Infalling and outflowing material preferentially found along major and minor axes, respectively (e.g., Bordoloi 2011, Kacprzak 2012, Lan 2014)
- What is the kinematic nature of material in the CGM as a function of galaxy type?

Two-Point Velocity Correlation Function

- Cloud-cloud velocity probability distribution function
- Probability of finding any two clouds separated by line of sight Δv
- Velocity dispersion of clouds in absorber

Two-Point Velocity Correlation Function

Other works attribute Gaussians to:

Motions within galaxy and between galaxy pairs (Petitjean & Bergeron 1990)

Vertical dispersion in galaxy disks and rotational motion (Churchill+ 2003)

Different Gaussians due to the different processes occurring in different types of galaxies?

Nielsen+ 2013, ApJ, 776, 114 & 115

MAGIICAT

- MgII Absorber-Galaxy Catalog
- 182 Isolated galaxies have:
 - Detected MgII absorption or an upper limit on absorption
 - D < 200 kpc
 - Spectroscopic redshifts z < 1
- Kinematics Subsample:
 - 47 MAGIICAT pairs with HIRES/UVES spectra
 - Voigt profile fitted to obtain velocities of pixels involved in absorption
 - EW sensitivity cut of 0.07 Å

astronomy.nmsu.edu/cwc/Group/magiicat

Table 4MAGIICAT Properties			
Property	Min	Max	Median
$W_r(2796)$ (Å)	0.003	4.422	0.400
Zgal	0.072	1.120	0.359
D (kpc)	5.4	93.5	48.7
M_B	-16.1	23.1	-20.4
M_K	-17.0	25.3	-22.0
L_B/L_B^*	0.017	5.869	0.611
L_K/L_K^*	0.006	9.712	0.493
B-K	0.04	4.09	1.48

- Halo masses
 - Abundance matching
 - $10.7 < \log (M_h/M_{sun}) < 13.8$
 - Median log $(M_h/M_{sun}) = 12$

Gas Kinematics Expectations

• Blue Galaxies

- Ongoing evolution from infalling material triggering star formation which causes outflowing material
- Signatures: Larger internal velocity dispersions?
- Red Galaxies
 - Become quiescent over time due to lack of fuel for star formation
 - Merging satellites due to more massive and more dense environments
 - Signatures: Smaller internal velocity dispersions? Large dispersions of absorbers around the galaxy?
- Low and High Redshift
 - More star formation at larger redshift; depends on type
 - Merging rates decrease with decreasing redshift
 - Signatures: smaller internal velocity dispersions and dispersions of absorbers around galaxy at lower z compared to higher z?

Pixel TPCF

- Velocity differences of pixels associated with absorption
- Improved sensitivity to absorption broad wings if present
- More data for better statistics

Internal Absorber Velocity Dispersion

- Blue galaxies velocity structure unchanged over 2 Gyrs (0.2σ)
- Red galaxies redshift evolution with gas more relaxed at low z; internal dispersion less turbulent (6.5σ)

TPCF with respect to absorption

Internal absorber velocity dispersion

TPCF with respect to the galaxy

Velocity dispersion of absorbers around galaxy

TPCF normalized with respect to the galaxy

Velocity dispersion of absorbers around galaxy

Velocity Dispersion Around Galaxy

- Blue galaxies narrow velocity range, large velocities at low z (2.2 σ)
- Red galaxies narrow velocity range at high z, large velocities at low z (7.0 σ); low z more extended in velocity than blue gals (3.5 σ)

Quandaries...

Expectations

 Blue galaxies currently forming stars, red galaxies are not. Outflows and infall therefore in blue, not red

 Red galaxies tend to be in more overdense environments

Questions

- What is the kinematic nature of higher velocity material around galaxies at lower z?
 - Explanation: Possibly outflows in blue galaxies
- Why is higher velocity material present and so dramatic in red galaxies?
 - Explanation: Material seen at high Δv might be gas in satellites instead of outflows

Quandaries...

Expectations

 Red galaxies to become more quiescent over time rather than more active

Questions

- Why does internal absorber dispersion become more quiescent over time but more stirred up with respect to the galaxy at lower redshift?
 - Explanation: Ancient outflows in red galaxies stirred up material around galaxies while absorbers themselves have since settled?

Internal absorber dispersion

Dispersion of absorbers around galaxy

Summary

- Internal dispersion of absorbers in **red** galaxies more quiescent over time while **blue** galaxy absorber structures do not change over 2 Gyr
 - Absorption in blue galaxies may reflect ongoing evolution
 - Settling of absorption in red galaxies may indicate passive evolution no more stirring of the gas
- Dispersion of absorbers around galaxies at lower z larger than higher z
 - Possible outflows or satellites at lower z?
- Simulations would help untangle processes giving rise to velocity structure!