Quasars Probing Quasars VII & VIII. The Pinnacle of Cool CGM at *z* ~ 2 and the Physics of Massive Galaxy Formation

Marie Wingyee Lau (UCSC) In collaboration with J. Xavier Prochaska (UCSC), Joseph Hennawi (MPIA) August 11, 2014

The Circumgalactic Medium (CGM)

- Diffuse gas, metals and dust
- $T = 10^4 10^6 \text{ K}$
- $\Delta R = 10 300 \text{ kpc}$
- Bound to the dark matter halo?
- Supply fuel to star formation
- May be driven by SF feedback
- CGM is too diffuse to study in emission
- A random sightline is intercepted by < 1 massive halo

Simulated *z* ~ 3 massive galaxy CGM, AMR code ART, radiative transfer post processing, Fumagalli+11

The Quasars Probing Quasars (QPQ) Experiment

- ~ 10⁶ quasars in SDSS
- Assume correlation takes the form $\xi_{QQ} = (r/r_0)^{-\gamma}$, clustering amplitude $r_0 \sim 8 \ h^{-1}$ Mpc at $z \sim 2$ implies $M_{halo} \sim 10^{12.5} M_{\odot}$ (White+12)
- Quasar hosts are predicted to evolve into present day massive galaxies
- Follow up spectroscopy on closely projected quasar pair candidates
- To date our QPQ survey has ~ 700 pairs to within 1 Mpc separation (QPQ6)

Optically Thick Absorbers around $z \sim 2$ Quasars

- Extending to ~ 1 Mpc (QPQ1, QPQ5, QPQ6)
- Line-of-sight proximity effect: a quasar's spectrum doesn't show absorption by its own gaseous halo (QPQ2)
- No evidence of transverse proximity effect (QPQ4, QPQ6)

Optically Thick Absorbers around $z \sim 2$ Quasars

- A high incidence of large HI Lya EWs along the QPQ sightlines (QPQ1, QPQ2, QPQ6)
- Simulations underpredict the covering fractions (Fumagalli+14)

QPQ7: Highly Enriched Cool CGM of $z \sim 2$ Quasars

Large EWs, ~ 1 Å

- Strong CII absorption at R_{\perp} < 200 kpc and weak beyond
- Excess incidence of strong CIV absorption to 1 Mpc

QPQ7: Highly Enriched Cool CGM of z ~ 2 Quasars

- Pinnacle of cool, enriched gas among all galaxy populations
- Quasar feedback unlikely the main driver of cool, highly enriched CGM
- Host halos more massive than coeval LBG halos
 - May be driven by halo mass?

QPQ8: From Quantitative to Qualitative Assessment

- QPQ1 QPQ7 measured covering fractions and EWs from low dispersion data
- To construct a detailed model for the physical state of the gas, we require:
 - Echellette resolution
 - Closely projected, $R_{\perp} < 300$ kpc
 - Physically unassociated, $\Delta v \gtrsim 4000 \text{ km s}^{-1}$
- The prototype QPQ3: is it typical?
 - Construct a statistical sample of 11 quasar pairs

J1204+0221

QPQ8: Multiple Ionization States of Metals

- \pm 2000 km s⁻¹ search window around z_{fg} for absorption lines
- Absorptions at unrelated redshifts can be identified

J1420+1603BG $z_{bg} = 2.06$ $z_{fg} = 2.02$ $R_{\perp} = 108$ kpc

QPQ8: Velocity Span of Low and High Ions

- Δv_{90} : velocity width enclosing 90% of the optical depth
- Low ions, when detected, show velocity width similar to that of high ions

QPQ8: Modeling N_{HI} with Voigt Profiles

- Diverse measurement precision
 - With damping wings
 - Full series of Ly α , β , γ , δ ,...
 - Lya only
- χ^2 best fit with ALIS (Cooke, private communication)

QPQ8: Low Ion Surface Density Profiles

- Measure column densities with the apparent optical depth method
- HI and low ions' surface density decreases with R_{\perp}
- Total $M_{\rm HI} \approx 2 \times 10^9 M_{\odot}$ within $r_{\rm vir} \approx 160 \, \rm kpc$
- Large N_{CII} values, substantial metal mass

QPQ8: The Ionization Parameter $U = \Phi_{\text{ionizing}} / n_H c$

- Photoionization modeling using Cloudy
- Ionic ratios constraint *U*
 - U smaller than that expected for isotropic radiation of quasar

J1420+1603FG subsystem A

QPQ8: Mapping the Ionization States of the CGM

- U positively correlates with R_{\perp} (and anticorrelates with $N_{\rm HI}$)
- This dependence runs contrary to expectation if the quasar dominates

QPQ8: Total Cool Gas Mass and Metallicity

- Modeling N_H and [M/H] involves large uncertainties propagated from N_{HI} measurement, ionization parameter U, Cloudy, ...
- Using the median log $N_{\rm H} \approx 19.6$, within $r_{\rm vir}$ total $M_{\rm cool} \approx 3 \times 10^{10} M_{\odot}$

QPQ7 & QPQ8: Summary and Speculations

- CGM of massive $z \sim 2$ galaxies is the pinnacle of cool, enriched gas
 - Progenitors of present day massive galaxies
 - Quasars unlikely the main driver
- Substantial kinematics traced by low and high ions > 300 km s⁻¹
 - Is the gas outflow or cold accretion?
- Within $r_{\rm vir}$, total $M_{\rm HI} \approx 2 \times 10^9 M_{\odot}$ and total $M_{\rm cool} \approx 3 \times 10^{10} M_{\odot}$
- Metallicity ~ 1/10 solar
- U increases with $R_{\perp} \Longrightarrow$ quasar feedback unimportant