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State-of-the-Art Infrared Instrumentation is
allowing for Great Progress

WFC3 camera on the IRAC Camera Very Wide-Area
Hubble Space Telescope Spitzer Space Ground-based
Telescope Cameras

-- 4 arcmin field of view
(6x larger than NICMOS)

-- excellent sensitivity
(3-4x better than
NICMQOS)

-- excellent spatial resolution
(2x higher than NICMOS)
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4 z > 6.5 galaxies (before WFC3/IR)
(first 850 Myr of universe)
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& 120 z > 6.5 galaxies (after WFC3/IR)
: (first 850 Myr of universe)
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> 800 z > 6.5 galaxies (after WFC3/IR)




Why are studies of galaxies at very high
redshifts interesting?

-- It iIs when galaxies first form...

(halos of L* and sub-L* galaxies built up from z~30+ to z~3)

-- It 1Is when the universe was reionized...

(galaxies are most likely driver, so by studying the formation of first
galaxies perhaps we can gain insight)



Focus of this Presentation:

Galaxy Growth from z~10 to z~4



What are the different regimes to study galaxy growth!?

“Normal” Population of Faint Galaxies (Most stars in universe form here)

How rapidly do faint (low mass) galaxies grow up!?

= Study using the Hubble U

fields)

tra Deep Field (and similar

Rare Population of Bright Galaxies

How rapidly do bright (massive) galaxies grow up?

How Bright / Massive can Galaxies Become!

= Study using very wide-area fields

What can we learn based on current wide-area fields?



Full CANDELS Program (+ BORG + ERS) provides an ideal
data set to study the properties of the most luminous galaxies

4

Would like to use all 5 fields! 10'x13’ Grogin+ 17

Credit: Ferguson & CANDELS team [ Koekemoer+ 17
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Large Areas Required to Overcome Large Field-to-Field
Variance Observed at High Redshift
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With lots of great data sets....

what can we learn about galaxy growth!?

Let’s look at the z>=4 LFs



z~4-10 LFs from all CANDELS + HUDF + other legacy fields
(Bouwens et al. 2014, arXiv:1403.4295, 48 pages)

First Two
HUDF CANDELS CANDELS CANDELS CANDELS CANDELS BORG Frontier
+ parallels South North UDS COSMOS EGS Fields




Possible to Make Use of Whole CANDELS area?

CANDELS-North/South:
Deep HST data over a \ |
contiguous wavelength range 3'6 S 3'8 S AI, | 4'2 S 4'4

log,, Wavelength (Angstroms)




Possible to Make Use of Whole CANDELS area?

CANDELS-North/South:
Deep HST data over a
contiguous wavelength range

CANDELS-UDS

CANDELS-COSMOS

COSMOS-EGS:

BUT deep ground-based data fills in

wavelength gaps (most >27 mag)!
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z~4-10 LFs from all CANDELS + HUDF + other legacy fields
(Bouwens et al. 2014, arXiv:1403.4295, 48 pages)

First Two
HUDF CANDELS CANDELS CANDELS CANDELS CANDELS BORG Frontier
+ parallels South North UDS COSMOS EGS Fields




New determinations of UV LF at z~4, 5,6, 7, 8, 10
from all HST Legacy Fields

(Bouwens et al. 2014, arXiv:1403.4295)
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Highlights of Bouwens+2014:

> 800 likely z~7-8 galaxies
> | 1000 z~4-10 galaxies

Provide First Determination of
z~10 Luminosity Function

(together with Oesch+2014)



How Bright Can Galaxies Become at z~9-10?

Amazingly, ~10-20x Brighter than the z~9-10
Galaxies in the HUDF

Some of our best z~10 candidates are as
bright as L* galaxies found at z ~ 3 by
Steidel et al.



One of Six Bright z~9-10 Galaxies in CANDELS

optical F105W F125W F140W F160W
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Another Bright z~9-10 Galaxy in CANDELS

optical F105W F125W F140W F].GOW K [3.6] [4.5]
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Another Bright z~9-10 Galaxy in CANDELS
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Very Low Formal Probability of Contamination
(CANDELS z~9-10 sample much more robust than HUDF z~9-10 sample)
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How does the observed z~10 LF compare
with extrapolations from lower redshift?
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How does the observed z~10 LF compare

with extrapolations from lower redshift?
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How does the observed z~10 LF compare
with extrapolations from lower redshift?
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The sizes of these z~9-10 candidates are exactly
what we would expect...

@ Bouwens+ 2004
3.5/ @ Oesch+ 2010

@ Ono+ (2013)
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The sizes of these z~9-10 candidates are exactly

what we would expect...
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The colors of these z~9-10 candidates are exactly
what we would expect...
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How do the Oesch+2014 z~10 galaxies rank among
the most distant galaxies ever discovered?

oS
?010 8 oQoe et 013)

Name Reds Disooverer

MACS0647-JD

oq Oesc 01 3) +
é et aI (2011)

eng et al. (2012)

XDFij- 8112
HUDF12- 42@@ éo\) Ellis et al. (2013)
HUDF 47 \‘G McLure et al. (2013)

HUDF09-2 5@3 \ 9.0 McLure et al. (2013)

HUDF 12-42657049 8.8 Ellis et al. (2013)
BEFORE OESCH+2014



How do the Oesch+2014 z~10 galaxies rank among
the most distant galaxies ever discovered?

Name Redshift Discoverer
MACS0647-JD 10.8 Coe et al. (2013)
GN-z10-1 10.2 Oesch et al. (2014)
GN-z10-2 9.9 Oesch et al. (2014)
GS-z10-1 9.9 Oesch et al. (2014)
XDFJ- Three of the Four Most Distant '(228111?) i
MAC Galaxies Known! (2012)

GN-z10-3 9.5 Oesch et al. (2014)



What new z~9-10 science can we expect in Cycle 22?

Follow-up bright

2~10 galaxy with Expected WFC3/IR
the HST Grism
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What new z~9-10 science can we expect in Cycle 22?

Follow-up bright
z~10 galaxy with
the HST Grism

Pl: P. Oesch
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How Bright Can Galaxies Become at z~4-8?

UV luminosities can reach ~3-4 L*(z=3)

Can approximately quantify using characteristic
luminosity from Schechter fit

Best Derived Using All Wide-Area CANDELS fields

Bouwens+2014



How Bright Can Galaxies Become at z~4-8?
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But individual galaxies become more UV luminous with
cosmic time (Bouwens+2007), no?

upsizing of galaxies in UV luminosity first quantified by
Bouwens+2007

and later quantified in rest-frame optical (Stark+2009)

this upsizing of galaxies was “rediscovered” and more properly
quantified by Papovich+2011 and Lundgren+2014 using a
cumulative number-density matching formalism



Bouwens+2007 luminosity evolution is still true...
but only for normal galaxies...
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One might guess that the brightest and rarest objects
brighten in the same way in the UV?

I .

But this does not seem to occur!




However, More Limited Evolution in UV
luminosity for the brightest galaxies
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Why Little Evolution in Maximum Brightness of
(Galaxies in UV? Probablv Dust Extinction

ldea that L*(UV) was set by dust extinction
first proposed by Bouwens+2009 and Reddy+2010

Bouwens+2009

Credit: Elbaz, Obergurgl 2007



If the UV luminosity of galaxies saturates at a maximum
value, how would the UV LF evolve?

COMMON| 2=14 Develop sirr]nple LF model
ere

FINALLY Assume galaxy light traces

DENSITY the the halo mass
EVOLUTION evolution

but UV light cannot exceed

INITIALLY some maximum value
LUMINOSITY

EVOLUTION?

Number Density

RARE

T UV Luminosity
BRIGHT FAINT

Saturation
Luminosity



What about the bolometric LF?

o}

L2

C

2 Quenching likely

% becomes important

X at some mass

g (of course) OSITY

= EVOLUTION?
RARE

Bolometric Luminosity

BRIGHT

FAINT

Develop simple LF model
here

Assume galaxy light traces
the the halo mass
evolution



Could dust set an upper limit on UV luminosity
of galaxies at z>=4 ?



Let’s first look at th{ Some phenomenon is causing the
brightest objects to become
particularly red...
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Trend between UV colors and luminosity
becomes clear vs. optical luminosities
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z~5-6 galaxies show a similar dependence on
UV luminosity as at z~4...
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More generally that z~4-8 galaxies have similar
colors as a function of luminosity
| I | I’ | I | | | I | | | I
Consistent Dependence of
B on UV Luminosity
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How does the faint-end slope of the LF change with

redshift?
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see also Bouwens+2011, Oesch+2012, Bradley+2012, McLure+2013,
Bouwens+2014 Schenker+2013; Schmidt+2014



How does the faint-end slope of the LF change with

redshift?
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How does the shape of the LF change with redshift?

Also evident in parameter free way:
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Evolution of the faint-end slope in the simple LF model
shown earlier

Faint-end slope of the LF is
COMMON| 2=14 much steeper at earlier
times
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New determinations of UV LF at z~4, 5,6, 7, 8, 10
from all HST Legacy Fields

(Bouwens et al. 2014, arXiv:1403.4295)
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Summary / Conclusions

Current HST data sets allow us to identify as many as >800 galaxies at
z~7-8 and 15 galaxies at z~9-10...

Six luminous (~L*(z=3)) galaxy candidates at z~9-10 have been identified
over CANDELS (Oesch+2014). These candidates have exactly the volume
density, colors, and sizes we would expect if they were z~9-10 galaxies.

Amazingly, the newly discovered population of bright z~9-10 galaxies appear
to be more robust than the fainter z~9-10 candidates in the HUDF.

Our large samples of bright z~4-7 galaxies from the 5 CANDELS + BORG
fields allow us to set robust constraints on the volume density of bright
galaxies. The characteristic luminosity M* at z~7 appears to be similar to
z~3. We speculate this is due to the UV light saturating at a certain SFR.

The UV LF shows strong evidence (4.50) for being progressively steeper at
high redshift to faint-end slope of —-2.06 + 0.12 at z=7. The observed
evolution similar to expected evolution in halo mass function.



