Comparing the evolving properties of satellite and isolated dwarf galaxies

Kenza Arraki

New Mexico State University

Anatoly Klypin Sebastian Trujillo-Gomez Daniel Ceverino Joel Primack

Goals:

understand why satellite and isolated dwarf galaxies have their abundances and structures

by examining high-resolution hydro simulations of MW-like galaxies and their satellites and surrounding dwarf galaxies

Introduction

Behroozi+ 2013, ApJ, 770, 33 Huang+ 2012, AJ, 143, 133 Weisz+ 2014, ApJ, 789, 23

Simulation Suite

Run by Daniel Ceverino with the hydroART code (AMR)

Box length = 20 /h Mpc DM mass = $8 \times 10^4 M_{sun}$ Resolution = 9 /h pc (z=3)

cells = 67 million
particles = 30 million
star particles = 7.7 million

Stellar winds Metal advection Supernovae feedback Radiation pressure (τ_{IR}=0)

Main Halo

$$M_{vir}(z=1) = 7.2 \times 10^{11}$$

Select a volume of 250 kpc around main halo

Examine properties of dwarfs within this region

Main Halo

$M_{vir} (z=1) = 7.2 \times 10^{11}$

Temperature

Metallicity

Satellite galaxies

Distribution of galaxies around main halo

Satellite galaxies

Satellite galaxies

Dark satellite galaxy population

Stellar Mass – Halo Mass Relation

Shen+ 2013, arXiv:1308.4131 Behroozi+ 2013, ApJ, 770, 57

Stellar Mass – Halo Mass Relation

Shen+ 2013, arXiv:1308.4131 Behroozi+ 2013, ApJ, 770, 57

Gas Mass – Stellar Mass

Huang+ 2012, AJ, 143, 133

Average Star Formation Rates

 $M_{\star} < 10^4 M_{sun}$

Average Star Formation Rates

 $10^4 M_{sun} < M_* < 10^5 M_{sun}$

 $10^5 {\rm M_{sun}} < {\rm M_{\star}} < 10^6 {\rm M_{sun}}$

Average Star Formation Rates

 $10^{6} \text{ M}_{\text{sun}} < \text{M}_{\star} < 10^{7} \text{ M}_{\text{sun}}$

 $M_{\star} > 10^{7} M_{sun}$

Conclusions

- High-resolution hydro simulation of MW-like galaxy and its satellites
- Main halo hosts luminous and dark subhalos
- Velocity function has slope of -3
- Main halo and subhalos agree with SHM relationship. Large spread in M_{*} for given M_{vir}
- Gas mass to stellar mass agrees with HI observations
- SF in most satellites has initial burst then is roughly constant. Not completely suppressed by reionization