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® Motivation: neutrinos and the cosmos
(I) ® Neutrinos in hot and dense media

® Structure of QKEs from quantum field theory

® Anatomy of the QKEs

® Coherent evolution: flavor and spin

(1)

® |nelastic collisions

® Comparison to other approaches & future challenges

Talk by A.Vlasenko

® Neutrino-antineutrino transformation in astrophysical
environments



Structure of the QKEs
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e FEH,C: 2nfx 2nf matrices, all components coupled in general

e D, H,C are functionals of F F: non-linear system



Interlude on kinematics

® For ultra-relativistic V’s of 3-momentum p, express all Lorentz
tensors in terms of following basis:
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Interlude on kinematics

® For ultra-relativistic V’s of 3-momentum p, express all Lorentz
tensors in terms of following basis:

( )

n"(p) = (1, p)
7—2#(])) — ( —]3) light-like

light-like

£ P transverse

T12(p) )
n-n=n-n=>00 n-n=>2
n-x; ="n-x;=>_0 Ti Tj = —0i

® Four-vector components along basis vectors:
Ve — Vi=n-V Vi=ua; -V
afi — 8 (‘_)Z =T a
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Interlude on potentials

® Neutrino self-energy diagrams — vy €1, p

in-medium 4-vector potential (time-
and space-like components in
. . . 24

non-isotropic medium)

e Computed from neutrino interactions in the Standard Model. Ex:
neutrino-matter interaction at low-energy can be put in the form

4 \
LVU) — —Gw I/ PL le/ (1 rwv
\ y
Ty =ny X Gp ~ g* /M3 )
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Interlude on potentials

Neutrino self-energy diagrams — v vy €1, P
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Interlude on potentials

Neutrino self-energy diagrams — v vy €1, P
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Interlude on potentials

Neutrino self-energy diagrams — v vy €1, P
in-medium 4-vector potential (time-
and space-like components in

. . . 17 17 vV vV
non-isotropic medium) °

2ns X 2nf matrix structure:

Potential for L-handed V’s

Z;L N\ @ Potential for R-handed V’s:
€r) = . . o 3
(] Dirac: Y, o« Gpm~* ~ O(€’)

Majorana: Xy = —Xh

Induced interaction

Line = —UpLpvp — VrYL VR + hec.



Interlude on potentials

® Neutrino self-energy diagrams — vy €1, p

in-medium 4-vector potential (time-
and space-like components in

non-isotropic medium)

® 2nfX 2nf matrix structure;
Potential for L-handed V’s

Zp ’ Potential for R-handed V’s:
Dirac: Y7, oc Gpm? ~ O(¢€?)

Majorana: Xy = —Xh

® For a test V of momentum p, get components

. p
Zh' — 1) ( p) Y approximately along Vv trajectory

¥ =2'(p) - X

approximately transverse
to V trajectory

- J




Interlude on potentials

® Neutrino self-energy diagrams — v v, 6P
in-medium 4-vector potential (time-
and space-like components in
non-isotropic medium) " ’ -4 ’
® Explicit form of neutrino-induced 2k:
4 )
| = v2GE (T +1 ()
H dgq . . — r —
Ji,) () = (2r) " (q) (fLL(q,‘I> - fRR((I:I>)
- ' J

n*(q) = (1,9)



Anatomy of the QKEs



Drift & force terms
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Drift & force terms
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Drift & force terms

N

OF

O~ F - Zm{z dF}——{m,.

ox"

op
OF

ok |p {Z dF} { or

L Op

}
}

~

J

® Simple interpretation if one notes that
V(+) and V(-) dispersion relations are:

® T[hen one
finds:
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Coherent evolution

iDF ={H, F] +iC
iDF =|H, F| + iC

( Coherent evolution:
vacuum mass &

forward scattering

(refractive potential)

“MSW”




Coherent evolution

(i) iDF =B +iC
F- ()| iDF = [H, P +iC

e Often written in the equivalent g )
form of a Schrodinger-like equation 10 = H
for “v flavor wave-function” N y Ve
=1 ¥,
® Mapping of the two approaches: o ) -
off-diagonal entries in f.L encode 22 = Yo, V5 '
information about relative QM phases  { )

® Not clear how to include inelastic collisions in wave-function approach



Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators
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Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators

4 )
H — HR Hm H _ HR I{m
HY, Hp HY, Hp
\ 4
— . ; ij A +y—
Hp =T (m m- e’ 0' Xy, +4ZRZR)
P
H T , (77‘2;77'2,Jr ' 012‘2 + 437 Zz)

Standard vacuum mass
term + medium refraction
(included in all analyses)
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Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators

4 )

B HR Hm T HR Hm
m-(af w) 7= (af &)

m

_ ,, 1 —
Hp - (fm,Tm e " Z%—{ + 42};2&)

Hr ; (mm’L & 012‘2 + 437 Zz)

Standard vacuum mass  Additional O(&2) terms if
term + medium refraction  potential has space-like

(included in all analyses) components

zj—;R = 1/2(3} g £ %2 g)




Coherent evolution

® Controlled by 2ns x 2ns Hamiltonian-like operators

4 )

B HR Hm T FIR Hm
n- () 7= (uf &)

m
- J

1
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® Qualitatively new O(g?) effect: coherent conversion of LH <& RH V’s

H,

(ZE m! —m] Zz)

® Need anisotropic environment
(transverse component of 2)

® Need axial components, coupling to spin
[ I-flavor Hm ~ mv/p (2R - 21)"]

® Potentially big impact: Dirac (active-
sterile) vs Majorana (V-V)




More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(i,p/. b | . P, h) = —i(2m)2 2|p1 6 (p—p')

® Use medium-modified neutrino Lagrangian in perturbation theory

4 )

Lint = —U, MVUR — DLZRI/L — DRZLI/R + h.c.
- J
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More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(i,p' 1| 3,7, h) = —i(2m)* 2|p] 6 (p— p')[H ), (p)

® Use medium-modified neutrino Lagrangian in perturbation theory

4 )

Linvt = —VUr, MVR — DLZRI/L — DRZ:LI/R + h.c.
. /

* 21 rR: medium-induced vector potentials

) sn | Eri(iton- e

* Even in simple “bulb” model for SN: SR(I) # 0




More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(i,p' 1| 3,7, h) = —i(2m)* 2|p] 6 (p— p')[H ), (p)

® Use medium-modified neutrino Lagrangian in perturbation theory

4 A
Linvt = —VUr, MVR — DLZRI/L — DRZLI/R + h.c.
\. J
® |-flavor result Axial potential
Yh =¥ - %5
U
medium birefringence
+

mixing (transverse part)




More on spin-mixing term

® Effect can be derived using effective hamiltonian approach

(.0 | 4,7 by = —i(27)2 2|p1 6 (p—p K, (p)

® Similar mixing is induced by magnetic moment (Dirac for simplicity)

4 )

AL = (p,/2) vrou, F* v + h.c.

. J

® |-flavor result

transverse component
of the magnetic field

See de Gouvea & Shalgar for impact on SN neutrino collective oscillations
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Inelastic collisions

iDF = [H,F| +iC
“)| {DF = [H,F]+iC

)

“Boltzmann”



Inelastic collisions

® Controlled by 2nf x 2n¢ gain and loss potentials [ 1*[F, F fenp,.]

4 1 1 )
¢ = S{t F} - {u-,1-F}
RS S |L  WEIN o)
- 2 2 J
124

v,e,n,p

® []|* are non-diagonal in both flavor and spin (— decoherence)



® Example: CiL (upper nf x nf block) induced by neutrino scattering
off medium particles (e,p,n,...) in isotropic environment

Vo Vo

Y. 0 0
y=[ 0 v o
GF Yo 0 0 Y

T

Medium response function (knows about medium
particle distributions and their interactions)
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® Example: CiL (upper nf x nf block) induced by neutrino scattering
off medium particles (e,p,n,...) in isotropic environment

Vo Vo
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GF Yo 0 0 Y

T

Medium response function (knows about medium
particle distributions and their interactions)
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Comparison with other QKEs
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NPB 406, 423 (1993)

® Restricting to fuL and isotropic media, equivalent to Sigl-Raffelt



Comparison with other QKEs
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iDF = [H, F| +iC

NPB 406, 423 (1993)

® Restricting to fuL and isotropic media, equivalent to Sigl-Raffelt

® Similar in form to Strack-Burrows and Zhang-Burrows
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Comparison with other QKEs

-

P (i) \iDF = [H, F] ric

JRL JRR

NPB 406, 423 (1993)

Restricting to fiL and isotropic media, equivalent to Sigl-Raffelt

® Similar in form to Strack-Burrows and Zhang-Burrows
4 )

| | . 1310.2164
oF - U a]_:: - - 0;7_:: = _i[H’ ]—"] + C hep-ph/0504035
ot or op |
N J
But H,C, p are quite different
1302.2347

® Quite different from Volpe et al,, who include “abnormal
densities” (correlations of vV and V of opposite momentum) and
discuss their coherent evolution coupled to “normal densities”.
We do not include this, based on Lgradients >> LdeBroglie



Summary & future challenges

Neutrino QKEs can be formulated from QFT + power counting
in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglie)

Many expected features, some surprising ones (spin oscillations).
See A.Vlasenko’s talk for first applications to astrophysics

Challenges:
® Explicit form of the collision term (in progress)

e Computational implementation
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in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglie)
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See A.Vlasenko’s talk for first applications to astrophysics

Challenges:
® Explicit form of the collision term (in progress)

e Computational implementation

Early Universe: FO¢(p) — F(t|p|) — Fip (t)

isotropy: binning
no L-R coherence

2+ (nf)2xn|p| coupled ODEs, initial value problem




Summary & future challenges

® Neutrino QKEs can be formulated from QFT + power counting
in ratio of length scales (Losc, Lmfp, Lgradients >> LdeBroglie)

® Many expected features, some surprising ones (spin oscillations).
See A.Vlasenko’s talk for first applications to astrophysics

® Challenges:

® Explicit form of the collision term (in progress)

e Computational implementation

; ‘¢ Supernovae with spherical symmetry:
o ff) Fxp) = F(rIpLO) = Fiplo (r)

geometry binning

all © contribute S
4+ (nf)2+njp;*ng coupled ODEs, boundary value problem



