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Organization 

Nuclear reactions in the early universe 
¨  Lectures (Paris/E. Grohs) 

I.  Overview of cosmology/Kinetic theory/Big bang nucleosynthesis (BBN) 

II.  Scattering & reaction formalism/Neutrino energy transport 

¨  Workshop sessions (E. Grohs/Paris) 
I.  BBN exercises: compute Nuclear Statistical Equilibrium/electron 

fraction 
II.  Compute primordial abundances vs Ωb h2: code parallelization 

¨  Lecture notes 
¨  Will be available online (URL TBA) 
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Outline 

Lecture I 
¨  Overview 

¨  Cosmological dynamics in GR 

¨  Big bang nucleosynthesis (BBN) 

¨  Boltzmann equation 
¤  Flat & curved spacetime 

Lecture II 

¨  Unitary reaction network (URN) of light nuclei 

¨  Neutrino energy transport 
¨  Evan Grohs: observations of primordial abundances 
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Light nuclear reaction program @ LANL 

¨  Motivation 
¤  Data	  sets:	  σ,	  σ(θ),	  Ai(θ),	  Ci,j	  ,	  Ki

j’,	  Σ(γ),…→	  T	  matrix	  →	  resonance	  spectrum 

¤  Unitary parametrization of compound nuclear system  
¤  Applications: astrophysical, nuclear security, inertial confinement fusion, 

criticality safety, charge-particle transport, nuclear data (ENDF, ENSDF) 

¨  Ab initio 
¤  Variational MC; Green’s function MC 
¤  GFMC [PRL 99, 022502 (2007)] 

n  n-4He phase shifts 
n  comparison GFMC/R-matrix 

¤  challenge: multichannel 
n  eg. nα→nα, nα→dt & dt→dt  

¨  Phenomenology 
¤  R matrix (2→2 body scatt/reacs) 
¤  3–body channels being incorporated 

state with a node at the surface) decreases as R0 increases,
so we choose R0 ! 9 fm.

Second, the GFMC energy also depends somewhat on
the input !T . We find it important to adjust pair correla-
tions between particles in different clusters (between the n
and constituents of the ! in this case) so that the factoriza-
tion in Eq. (1) is enforced at large cluster separation [14].
We also adjust a parameter in !T that corresponds to k
until it matches the final GFMC energy; this typically takes
one or two iterations of the VMC and GFMC calculations
to obtain a self-consistent result.

Finally, in all of our A > 4 GFMC calculations, we use a
path constraint [1] on the GFMC walk to mitigate the
Fermion sign problem; we compute energy samples only
after releasing the constraint for some number of steps to
avoid biasing the results. We find that stable results in our
scattering calculations require the use of 80 unconstrained
steps rather than the usual 20 to 40. However, the "" step
size is unchanged.

In Fig. 1 we present phase shifts for all channels, com-
puted with three different interaction models. In each case
the AV18 potential is used as the two-nucleon interaction;
in the second (third) case the UIX (IL2) three-nucleon
potential is added. We also show partial-wave total cross
sections for the AV18" IL2 case in Fig. 2. Each point in
these figures is equivalent in computer time to a single
bound-state calculation of comparable statistical error.
Because of the narrow resonance in the 3=2# channel, #

varies rapidly with E so that the highest-energy state we
can reach—the first with a node at R0 —lies lower than in
the other two channels. Future calculations extending to
energies beyond this maximum-energy state should be
analogous to previous calculations of multiple bound states
with the same quantum numbers [15].

In the figures, we compare our results with those from a
multichannel R-matrix analysis of the 5He system [16] that
characterizes the measured scattering data very well
($2=d:o:f: is 1.6). Some of the resonance parameters
from that analysis are given in Refs. [17,18]. Because there
are more than 2600 data points in the analysis, the uncer-
tainties in the R-matrix phase shifts are likely to be much
smaller than the errors in the GFMC calculations.

We have made rational polynomial fits to tan%JL=k2L"1,
converted them to rational polynomials for the S-matrix,
and used these to find the poles of S. These fits are shown
as dashed curves in the figures. For each of the two p-wave
states, we find just one pole that is stable as the degrees of
the polynomials are changed; we identify these as the
resonance poles. For 3=2# the poles are at 1:19–0:77i,
1:39–0:75i, and 0:83–0:35i MeV for AV18 alone, AV18"
UIX, and AV18" IL2, respectively, compared with
0:798–0:324i MeV from analysis of the data [18]. The
corresponding 1=2# values are 1:7–2:2i, 2:4–2:5i, and
2:3–2:6i MeV, compared with 2:07–2:79i MeV. The
1=2" fits yield no stable pole, in agreement with the lack
of a resonance in this channel and with the R-matrix
analysis. All pole locations have an error of not more
than 3 in the last decimal place.

It is well known that realistic two-nucleon interactions
alone provide insufficient spin-orbit splitting in light nuclei
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FIG. 1 (color online). Phase shifts for n-! scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFMC results; dashed curves are fits described in the text; and
solid curves are from an R-matrix fit to data [16].
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FIG. 2 (color online). Partial-wave cross sections from the
AV18" IL2 Hamiltonian compared to R-matrix analysis.
Stars show the pole energies in 3=2# scattering for the
R-matrix fit and for AV18" IL2, with the bars indicating the
imaginary part.
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A System Channels Energy Range (MeV) 

2  N-N 
p+p; n+p, 
γ+d 

          0-30 
          0-40 

3  N-d p+d; n+d           0-4 

  4H 
  4Li 

n+t 
p+3He           0-20 

4 
  4He 

p+t 
n+3He 
d+d 

          0-11 
          0-10 
          0-10 

5 
  5He 

n+α	

d+t 
5He+γ 

          0-28  
          0-10 

  5Li 
p+α 
d+3He 

          0-24 
          0-1.4 

EDA Analyses of Light Systems 
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Analyses of Light Systems, Cont. 

A                                System (Channels) 

  6 6He (5He+n, t+t); 6Li (d+4He, t+3He); 6Be (5Li+p, 3He+3He) 

  7 7Li (t+4He, n+6Li); 7Be (γ+7Be, 3He+4He, p+6Li) 

  8 8Be (4He+4He, p+7Li, n+7Be, p+7Li*, n+7Be*, d+6Li) 

  9 9Be (8Be+n, d+7Li, t+6Li); 9B (γ+9B, 8Be+p, d+7Be, 3He+6Li)  

10 10Be (n+9Be, 6He+α, 8Be+nn, t+7Li); 10B (α+6Li, p+9Be, 3He+7Li) 

11 11B (α+7Li, α+7Li*, 8Be+t, n+10B); 11C (α+7Be, p+10B) 

12 12C (8Be+α, p+11B) 

13 13C (n+12C, n+12C*) 

14 14C (n+13C) 

15 15N (p+14C, n+14N, α+11B) 

16 16O (γ+16O, α+12C) 

17 17O (n+16O, α+13C) 

18 18Ne (p+17F, p+17F*, α+14O) 

26 tabulated analyses 2014 May 15 Paris BBN 



13,14C system analyses: σT (b) vs. En (MeV)  
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Two-channel analysis 

Single-channel analysis 

Analyses by GMH/MWP 
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Unitary, self-consistent primordial nucleosynthesis 

¨  State of standard big-bang nucleosynthesis (BBN) 
¤  d & 4He abundances: signature success cosmology+nucl astro+astroparticle 

n  but there’s at least one Lithium (7Li) Problem [6Li too? See: Lind et.al. 2013] 
¤  coming precision observations of d, 4He, η, Neff demand new BBN capabilities 
¤  resolution of 7Li problem: 

n  observational/stellar astrophysics? 
n  7Li controversial anomaly: nuclear physics solution? 
n  new physics? 

¨  Advance BBN as a tool for precision cosmology 
¤  incorporate unitarity into strong & electroweak interactions (next slide) 
¤  couple unitary reaction network (URN) to full Boltzmann transport code 

n  neutrino energy distribution function evolution/transport code 
n  fully coupled to nuclear reaction network 
n  calculate light primordial element abundance for non-standard BBN 

n  active-sterile     mixing 
n  massive particle out-of-equilibrium decays→energetic active SM particles 

¤  Produce tools/codes for nuc-astro-particle community: test new physics w/BBN 
n  existing codes are based on Wagoner’s (1969) code 

⌫
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Nuclear reaction network 

¨  Single-process (non-unitary) analysis 
¤  σαβ(E)±δσαβ(E) from expt 
¤  fit form (non-res+narrow res) to σαβ(E) 
¤  compute             →reactivity→network 
¤  NB: norm. systematics can be large 

n  17O case (below) 

¨  Multi-channel (unitary) analysis 
¤  Construct unitary parametrization 

n  R-matrix (Wigner-Eisenbud ‘47) 
¤  simultaneous fit of unpolarized/pol’d 

scatt/reac data→determine T(or S)matrix 
¤  determines a unitary reaction network 

(URN) for analyzed compound systems 

19
69
Ap
JS
..
.1
8.
.2
47
W

Wagoner ApJSuppl ‘69 

h�vi(T )
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Boltzmann eq., cross sections, thermal averages 

¨  Boltzmann equation 
¤  Toy model, single reaction à 

n  Full code has 144 reactions 
¤  Thermal (Maxwellian) averaged flux(v)*cross section 

¨  Energy dependent, angle-integrated cross section is 
determined from data; Ranking worst à best: 
¤  Guess: sometimes necessary when no data/calc. (e.g. TALYS) 

¤  Parametrize resonance data: undesirable since res/non-res related by 
unitarity; results in model dependent reaction cross section 

¤  Fit to experimental cross section: can be OK; normalization often 
problematic; subject to sometimes large systematic uncertainty 

¤  Unitary theory: multichannel R-matrix: sure-fire; downside: need 
multichannel data 

2014 May 15 Paris BBN 
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Observables from transition (T) matrix 

¨  Scattering matrix: QM amplitude for (i)nitial à (f)inal 

¨  All observables ~ T matrix bilinears 
¤  unpolarized differential cross section 

¤  polarization asymmetry 

¨  Diff cross section à int’d cross section à thermal averaged  

2014 May 15 Paris BBN 
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Unitarity: consequences on T matrix 

Tfi � T †
fi = 2i

X

n

T †
fn⇢nTni

Slide 12 

n  Implications of unitarity constraint on transition matrix 
1.  Doesn’t uniquely determine Tij; highly restrictive, however 

Elastic:                         (assuming T & P invariance) 
Multichannel: 

2.  Unitarity violating transformations 
•  cannot scale any set:  
•  cannot rotate any set: 
« consequence of linear ‘LHS’     quadratic ‘RHS’ 

3.  Unitary parametrizations constrain the experimental data itself 
« normalization, in particular 
« case studies: 17O & 9B compound system 

Tij ! ↵ijTij ↵ij 2 R
Tij ! ei✓ijTij ✓ij 2 R
/

NB: unitarity implies optical theorem                               ; but not only the O.T. �
tot

=

4⇡

k
Im f(0)

�fi =
P

n S
†
fnSni

Sfi = �fi + 2i⇢f Tfi

⇢n = �(H0 � En)

9
=

;

Im T�1
11 = �⇢1
Im T�1 = �⇢

Most important feature: 
linear ~ quadratic 
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Basics of R-matrix (data     amplitudes) 

¨  Assumptions (cf. Lane & Thomas RMP ‘58) 
a)  Non-relativistic QM (L&T58); LANL-EDA uses rel. 
b)  Two-body channels only (‘c’); aux. spectra code 
c)  Conservation of N, Z 
d)  Finite radius ac beyond Vpol≈0; sharp boundaries	 

¨ Separated pairs, “channels” 
¤  A nucleons →	  (A1,A2) 
¤    
¤  Assume ac= aα è many c have same channel in 

configuration space 
¨ Channel surface 

¤  Consider configuration space of 3A dimensions 
¤  Set of points: 
¤  Surfaces coincide but assumed to have negl. prob. 
¤  Channels are cylinders normal to channel surf. 

c = {↵s1m1s2m2} ! {↵(s1s2)sms`m`} ! {↵(s1s2)s`, JM}

[cr↵(c) = a↵(c)

surfaces we write as g—=P, g,. Sachs" has suggested
that the surface 8 may be visualized as a polyhedron,
each hypersurface of which corresponds to a channel
entrance. ; the channels are then cylinders normal to
these planes. An element of the surface S, is

dSg= c~ d0~4g~, (1.2)
where dQ, is the element of solid angle of the relative
separation between the pair c and q represents the
internal coordinates of the pair 0.. It is convenient not to
specify individual nucleons in a given pair c. Thus S,

Ej Z~&is really a sum over & & ~
channel surfaces.Z j

As an illustrative example, consider the nuclear
reactions of I.i' with protons:

'Li'+ p (elastic scattering)Li'*+p' (inelastic scattering)
~ lg Be'+nLl +p + Be ~ ~ L g+d

He4+He'
,Be'+photon, etc.

The bombardment Li~+p itself involves several
channels c. Since the spin of Li' is II= 2 and that of the
proton I2———,', the channel spin s is 1 or 2. Except at
very low energies, several incoming orbital angular
momentum waves 3 from an incident plane wave can
contribute to the reaction. Thus the reaction is initiated
by incident waves in several channels c, When the radial
distance of separation in these channels falls below u,
the proton enters the Li' nucleus. This "internal region"
of configuration space corresponds to the compound
nucleus, Be'*. Decay of this nucleus leads to outgoing
waves in all channels for which the relative energy of
motion is positive. For instance, if decay into Be +e
is energetically allowed, there will be outgoing waves in
the several channels that can give this pair. (Since there
are four neutrons that can be emitted, each of these
channels is really a sum over four channels, one for each
neutron. )
Finally we introduce the following additional channel

characterizations:

E,=—E, the energy of relative motion of the particles
of the pair c;

Mag3fn2
M,=—M=,the reduced mass;

M g+Mm
(2M. ]Z.

& ) &

k.—=k = ) ~, the wave number;
a~ )'

s.=e =hk /M, the relative velocity;

, the Coulomb 6eld parameter;
A

0,=—0 ~
——argF(1+1,+ig,), the Coulomb phase shift;

pc= pa = ~a~a
4' R. G. Sachs, Nuclear Theory (Addison-Wesley Press, Cam-

bridge, 1953).

3fag& Zaj and M~2, Z 2 are the mass, charge number of
the two particles of the pairn, respectively. Occasionally,
when no ambiguity can arise, these will be written M~,
Z&, 352, Z2. The E are positive for those channels
though which decay is energetically allowed and nega-
tive for those energetically forbidden; the latter
channels may also be referred to as "negative-energy"
or "virtual. "

where E is the total energy and H, the Hamiltonian
operator, is the sum of T, the kinetic energy operator
and V, the potential energy operator.
T has the form

A2

Qx;,
285j,

where m; is the mass of particle i and
(8 8 8)

p~, =]
&ax ay as;)

X;= (x;,y;,s,) is the position vector of particlei referred
to a 6xed arbitrary origin 0. For any general system of A
particles, the dependence of T on the centroid vector
(R= (P, m, ) ' P, ting;) may be separated off by
making an orthogonal transformation (X;)—+ (R,q&),
where the g~ are a set of (3A—3) internal coordinates
depending only on thc relative positions of the particles.
(The requirement that the transformation be orthogonal
imposes the only restriction on the choice of q» that
concerns us here. ) Under this transformation, Tbecomes

Va'+T s2'
where the erst term is the kinetic energy of the motion
of the centroid (M being P, m;, the total mass) and
the second term is that of the internal motion. The latter
has the form

where the c» are coc%cients determined by the orthogonal
transformation. Making this type of transformation
separately on the kinetic energy operators of the sub-
systems 0.~ and n2 of the pair 0. leads to
T=Tag+ Tam

A »P— »2'+ (T;.~)-i+ (T;.a)-2M y 2Ma2

where R~ and R2 arc the centroid position vectors of Q, L

2. Wave Functions for the External Region
Throughout the whole of configuration space, the

wave function of a given total system is assumed to
satisfy the Hamiltonian equationExample: 8Be compound system 

(capture)	
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R-matrix formalism 

¨  R-matrix theory: unitary, 
multichannel parametrization 
of (not just resonance) data 

¨  Interior/Exterior regions 
¤  Interior: strong interactions 

¤  Exterior: Coulomb/non-
polarizing interactions 

¤  Channel surface  

¨  R-matrix elements 
¤  Projections on channel surface 

functions             of Green’s 
function 

¤  Boundary conditions 

Sc : rc = ac S =
X

c

Sc

(rc|c)

GB = [H + LB � E]�1

Bloch operator                                 ensures 

Hermiticity of Hamiltonian restricted to internal region 

LB =
X

c

|c)(c |

@

@rc
rc �Bc

�
Bc =

1

uc(ac)

duc

drc

���
rc=ac
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R-matrix implementation in EDA 

¨ EDA = Energy Dependent Analysis 
¤ Adjust  

¨ Any number of two-body channels 
¤ Arbitrary spins, masses, charges (zero mass) 

¨ Scattering observables 
¤ Wolfenstein trace formalism 

¨ Data  
¤ Normalization 
¤ Energy shifts 
¤ Energy resolution/spread 

¨ Fit (rank-1 var. metric) solution 

¨  Covariance determined 

III. The EDA code 
The multichannel R-matrix formalism has been implemented 

in the most general possible form in the Los Alamos code EDA 
(for I;nergy .Qependent Analysis) [5]. A flow-chart of the 
code ' s operation is shown in Fig. 2. The code accommodates 
any number of two-body channels having particles with 
arbitrary spins, masses , and charges. The formulation is 
relativistic, so that even zero-mass particles, such as photons, 
are treated correctly. General scattering observables for 2 2 
processes are calculated using the Wolfenstein trace formalism 
[6]. Experimental data can be modified by the use of adjustable 
normalizations and energy shifts, and the calculations can fold 
in the effects of beam energy resolution/spread . 

near a solution, when all the parameters (including 
normalizations) are adjusted to minimize X2

. 

Near a solution, chi-square assumes the quadratic form 

X"f)" + (p - Po) T go + 1(p - Po) 'G 0 (p - Po), (5) 

in which go = V' = 0, and Go is the matrix of second 
P P_P II 

derivatives of X2 with respect to parameters at the solution point 
po. A rank-one variable-metric search algorithm builds up 
iteratively, in terms of which the parameter covariance matrix is 
Co = The accuracy of this procedure is assured by using 
analytic first derivatives, and by terminating the search only 
when the magnitude of go is sufficiently small. Cross-section 
covariances are then given by first-order error propagation as 

Energy Dependent Analysis Code cov[a, (E)a) (E')] = [V'pa; (£)r Co [V'po-,cE')tp ., 
(6) 

R-matrix : Data-related 
parameters : ......--

Y"),,V c)" 
Rec = I I E. _ E normalizations 

;. I. energy sh i fts 

+ ,aleul"le 

T - (or S-) matrix elements 

+ I"'rm 

Scattenng observable, 
usmg Wollenstem trnce 
formalism 

.. "'M n. (X ) 

Expenmt!ntal data for 
all reactions 

'dill' r ,rar1 t r 
t!lf f1UnlmUm 

FIG. 2: Schematic of the EDA code. 

The R-matrix calculations are compared with experimental 
data using 

2 = ",[ nX,(p)_R, ]2 +[nS-IJ 
X EOA f:..R i"1S / S ' , , 

(4) 

in which for a given scattering observable, X, (p) are the values 
calculated from R-matrix parameters p, R;, f:..R, are the 
measured relative values and their standard errors, respectively; 
S, i"1S are the measured scale and its standard error, and n is the 
associated adjustable normalization parameter. This expression 
differs from the usual one in which the deviations are weighted 
by the inverse of the full variance/covariance matrix for the 
measurements M, = R,S. However, if the relative and scale 
parts of the measurement are assumed to be independent, as in 
Eq, (4), the usual expression closely approaches the EDA one 

= 6a, (£)6a, (E')p'J (£,E') , 

expressed on the second line in terms of the cross section 
standard errors 6CY and correlation coefficient p. 

IV. Examples 
We will give examples of covariances calculated from two 

of the EDA R-matrix analyses that contributed to the IAEA 
evaluation of the light-element standards, as discussed in this 
workshop by Carlson et at. [7]. First is the N-N system, which 
is non-resonant in the low-energy range, and the second is the 
7Li system, which has several resonances in the energy ranges 
considered. In the second instance, the covariances differ from 
those of the latest IAEA standards evaluation [8] because that 
evaluation included other analyses and data in the final result. 

A. The nucleon-nucleon system 
The R-matrix analysis of the N-N system is a charge-

independent, relativistic parameterization of p-p and n-p 
scattering data, along with measurements from n+p capture and 
r+d photodisintegration, at energies up to 30 MeV , The top part 
of Table I gives the channel configuration of the analysis and 
the bottom part a summary of the types of data included, 
numbers of points, and X2 contributions for each reaction. 
Overall, an excellent fit is achieved to more than 5000 data 
points, giving a chi-square per degree of freedom of 0.83 . 

The spin-dependent n-p scattering lengths from the analysis 
areau =-23.719(5)frnanda,=5.414(l)frn. These give the 
values 
ac = (3a, + ao) / 4 = - 1.8693 frn , 

(7) 

CY " = rc (3a,2 + = 20.437 b, 
for the coherent scattering length, polarized cross section, and 
scattering cross section, respectively, near zero energy. The 
first two agree exactly with the experimental values [8,9], while 
the zero-energy scattering cross section agrees with the 
measurement of Houk [10], but not with that of Dilg [11]. A 

X

E� & �c�

�2
EDA =

X

i


nXi(p)�Ri

�Ri

�2
+


nS � 1

�S/S

�2
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17O analysis configuration 

Channel ac (fm) lmax 

n+16O 4.3 4 
α+13C 5.4 5 

Reaction Energies 
(MeV) 

# data 
points 

Data types 

16O(n,n)16O En = 0 – 7   2718 σT, σ(θ), Pn(θ) 
16O(n,α)13C En = 2.35 – 5     850 σint, σ(θ), An(θ) 
13C(α,n)16O Eα = 0 – 5.4     874 σint	

13C(α,α)13C Eα = 2 – 5.7    1296 σ(θ) 
total   5738 8 
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17O compound system: experimental status 
Motivation -II�

More than 30% of differences are 
seen among experimental data�

Affect criticality benchmark 
calculations slightly�

Nobody knows which value is more realistic 
( This problem is recognized in the world as listed in CIELO)�

13C(α,n)16O�

Alpha-particle Energy (MeV)�

Bair & Haas + (73)�
Harissopulos+ (05)�

Large difference in (n,α) cross sections�

Neutron Energy (MeV)�

16O(n,α)13C�

σ
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�

σ
 (b

ar
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�

THE 13C(α, n) REACTION AND ITS ROLE . . . PHYSICAL REVIEW C 78, 025803 (2008)
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FIG. 5. (Color online) Present S factors compared with previous
data.

This was achieved independent of particle type and energy by
regular runs at 800 keV α energy. In this way, the effective
thickness of the 13C layers was determined before and after
each measurement, and half the difference was adopted as
a conservative estimate of the related uncertainty. Therefore,
the systematic uncertainties depend also on the time between
successive target characterization runs.

Because of the rapidly falling cross section, the uncertain-
ties at lower energies are clearly dominated by limitations
in counting statistics. At higher energies, where systematic
uncertainties dominate, overall uncertainties could be reduced
to the level of 5%.

F. Comparison with previous data

The present S-factor results are shown in Fig. 5 in
comparison with data from previous experiments. Although
there is good agreement with the S-factor data of Davids [15],
Bair and Haas [16], and Drotleff et al. [10], the measurement
by Kellogg et al. [17] reports systematically smaller S-factor
values. A reevaluation of these data by Brune et al. [18]
adopting a different normalization resulted in much better
agreement with the present values, but the S factors still seem
to be systematically smaller by ≈15% than the trend of the
other data sets.

More recently, a measurement of the 13C(α, n)16O cross
section by Harissopulos et al. [26], which covers a wide
energy range using enriched 13C targets with a thickness of
≈35 keV at 1 MeV beam energy, claims an overall uncertainty
of 4% for the mean cross section data. At low energies, the
cross section data seem to support the results of Kellogg
et al. [17], which are slightly lower than the present values. The
largest uncertainty in the results of Ref. [26] is related to the
neutron efficiency, which was determined mainly by Monte
Carlo simulations of the detector system. These simulations
were checked against the low mean neutron energy of
2.3 MeV of a 252Cf source, while the neutrons from the
13C(α, n) reaction are released with much higher energies.
Therefore, systematic deviations cannot be excluded for the
data of Harissopulos et al. [26], in contrast to the present work,

where the neutron efficiency was experimentally verified over
a range of well-defined energies.

Accordingly, it appears that the inherent systematic un-
certainty of the present data is more accurately controlled.
Therefore, and in view of the good agreement with the results
of Refs. [10,15,16], the further analysis of the reaction data is
based on our values.

III. MEASUREMENT OF 13C(α, α)13C ELASTIC
SCATTERING

The double differential scattering cross section of α parti-
cles on 13C was measured at the Nuclear Structure Laboratory
of the University of Notre Dame over a wide energy range
and with high angular resolution. A first campaign was carried
out at the 10 MV Pelletron tandem accelerator with a beam of
doubly charged α particles. The beam was focused onto 13C
targets 8 mm in diameter, which were mounted in the center
of a large scattering chamber. The position of the beam on the
target was defined by two pairs of slits in front of the chamber.
A cold trap at the entrance of the chamber served to minimize
12C buildup on the sample as shown in the schematic sketch
of the setup in Fig. 6.

The chamber contained 29 silicon detectors at laboratory
angles of 43.9◦, 48.9◦, 54.0◦, 58.9◦, 63.9◦, 68.9◦, 74.0◦, 75.8◦,
79.0◦, 80.8◦, 84.0◦, 85.8◦, 89.0◦, 90.8◦, 94.0◦, 95.8◦, 99.0◦,
100.8◦, 103.9◦, 105.8◦, 110.8◦, 115.8◦, 120.8◦, 125.8◦, 130.8◦,
140.8◦, 150.8◦, 160.8◦, and 165.8◦. These detectors were
mounted on both sides of the beam axis as indicated in Fig. 6
with an overlapping angular range of about 90◦. Collimators
8.9 mm in diameter in front of the detectors were used to define
the solid angle with respect to the 13C targets in the center. Only
for the most forward detector at an angle of 43.9◦, the diameter
of the collimator had to be reduced to 5.5 mm. The distance
from the center of the target to the collimators was 587 mm.

The targets with a 13C enrichment of 99.9% were between
9.6 and 12.1 g cm−2 in thickness. Up to three targets were
mounted on a sample ladder at an angle of 45◦ relative to
the beam axis. The ladder carried also an empty position and
a collimator 4 mm in diameter for the exact positioning of
the beam. The beam current measured with a Faraday cup at
the exit of the chamber was corrected for the effective charge
state after passing through the carbon targets [28]. Secondary
electrons were suppressed by means of a ring at a potential of
−200 V.
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Faradaybecher
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Steerer Slits
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FIG. 6. (Color online) Setup for the measurement of the double
differential cross section for α scattering on 13C (not to scale).
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17O compound system: experimental status 
Motivation -II�

More than 30% of differences are 
seen among experimental data�

Affect criticality benchmark 
calculations slightly�

Nobody knows which value is more realistic 
( This problem is recognized in the world as listed in CIELO)�
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R-matrix analyses support B&H73/Heil08 

¨  LANL R-matrix fit to Bair&Haas73 
¤  two-channel fit: (16O,n) & (13C,α) 

n    
¤  data included:  

n  16O(n,n), 16O(n,α), 13C(α,n) 
n     

n χ2 min: normalizations float 
¤  Test Hariss05 data 

n  remove B&H73/Heil08 data 
n  fix Hariss05 norm to unity 

n  unable to obtain fit χ2 (< 2.0) 
n  now allow Hariss05 norm to float 

n  requires scale factor of ~1.5, 
consistent with B&H73 

¨  Kunieda/Kawano analysis [2013] 
¤  cf. LANL R-matrix(EDA)/ENDF/B-VI.8 
¤  with independent R-matrix code 
¤  Right to conclude B&H73 data correct 

on the basis of  unitarity! 

Analysis for 17O system�
✓ Two partitions : (n+16Og.s.) and (α+13Cg.s.) �

✓ Neutron energy : 

with negative & distant levels�
J π =1/ 2± ,3 / 2± ,5 / 2± ,7 / 2±

✓ Levels in 17O (ENDSF):�

✓ Model parameters :  

4.14 MeV� 6.36 MeV�

3.09 MeV�6.
05

 M
eV
�

16O� 13C�17O�

n0�
α0�

1st�

1st�
En ≤ 5.2 MeV (6 MeV)�

- rc  : Channel radii, 
- γcc’  : Reduced width amplitudes, 
- Eλ  : Level energies (energy eigenvalues)�

`n = 0, . . . , 4; `↵ = 0, . . . , 5
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FIG. 2: 13C(α,n)16O reaction cross sections (logarithmic view
in lower panel)
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FIG. 3: 16O(n,α)13C reaction cross sections

Those above results suggest, (at least in this study ??),
that the R-matrix analysis is independent of the system-
atic uncertainty of measurements. Although the physical
background is not necessarily clear (??), it must be a
great advantage in the nuclear data evaluation.

The finally obtained uncertainties/covariance matrices
(as plotted in Figs. 1 and 3) were multiplied by total
χ2/N values given in the linear space. However, we en-
countered an inconsistency, the difference of χ2/N value
in between the linear and the logarithmic space as shown
in Table II. This is true for 13C(α,n)16O cross sections

since we assumed large systematic uncertainty of 50% for
the measurement.

Expt. σsyst. (%) χ2/N (Log) χ2/N (Lin.)
Schrack+ ± 10% 1.620 1.619
Perey+ ± 10% 2.272 3.117
Ohkubo+ ± 10% 3.601 3.737
Harissopulos+ ± 50% 8.222 17.402

total 2.186 2.957

TABLE II: χ2/N values obtained in Case-1

B. Case-2

First, we obtained the renormalization parameters to-
gether with the model parameters. Table III lists renor-
malization values for each measurement. The resulting
values are equal to ≈ 1.0 for total cross sections. In this
case, deviations from 1.0 are within 2.2%, that is consis-
tent with the values suggested in the literatures. On the
other hand, the renormalization value resulted in 1.49 for
13C(α,n)16O cross sections. It should be noted that this
value is almost the same as the difference between the
experimental data and present results in Case-1.

Expt. Renormalization χ2/N (Log) χ2/N (Lin.)
Schrack+ 0.9926 (± 0.1195%) 1.484 1.511
Perey+ 1.0067 (± 0.1202%) 1.607 1.604
Ohkubo+ 1.0219 (± 0.2276%) 2.179 2.186
Harissopulos+ 1.4879 (± 1.0073%) 8.980 9.777

total 1.864 1.920

TABLE III: Values of renormalization parameter and χ2/N
values obtained in Case-2

Second, the each experimental data are renormalized
by the values listed in Table III. The systematic uncer-
tainty is set equal to |1.0 − Renorm.| for each measure-
ment. For example, 48.79% for Harissopulos et al. The
model parameters were searched for without the renor-
malization parameter. The resulting χ2/N values are
listed in Table IV, where large difference is not observed
in between the logarithmic and the linear space. As ex-
pected, the calculated cross sections are the same as those
obtained in Case-1, but the uncertainty values are rather
small as shown in Fig. 1 and 3 due to the difference of
the χ2/N value.

Figure 4 shows correlation matrix for total cross sec-
tions. The overall correlation is due to the contribution
from the background. Especially, a negative resonance
has such a big contribution that it brings strong correla-
tion below ∼ 3 MeV. The correlations amongst the neigh-
boring levels can be observed, but this trend is rather
local.

3

Credit: S. Kunieda 
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Toward a unitary reaction network for BBN 

¨  Primordial nucleosynthesis 
¤  Can unitarity play a role in precision BBN? 

¤  D,4He abund. agree with theo/expl uncertainties 
¤  At ηwmap (CMB) 7Li/H|BBN ~ (2.2−4.2)*7Li/H|halo* 

¤  Discrepancy ~ 4.5−5.5σ     the “Li problem” 

¨  Resonant destruction 7Li 
¤  Prod. mass 7 “well understood”; destruction not 

¤  Cyburt & Pospelov arXiv:0906.4373; IJMPE, 21(2012) 

n  7Be(d,p)αα & 7Be(d,γ)9B resonant enhancement 
n  Identify 9B E5/2+≃16.7 MeV≃Ethr(d+7Be)+200 keV 

n  Near threshold 

n  (Er,Γd)≃(170−220,10−40)	  keV solve Li problem 
¤  ‘Large’ widths 

n  Conclude “large channel radius” required 

  

20. Big-Bang nucleosynthesis 241

20. BIG-BANG NUCLEOSYNTHESIS

Revised August 2009 by B.D. Fields (Univ. of Illinois) and S. Sarkar
(Univ. of Oxford).

Big-Bang nucleosynthesis (BBN) offers the deepest reliable probe
of the early Universe, being based on well-understood Standard Model
physics [1–5]. Predictions of the abundances of the light elements, D,
3He, 4He, and 7Li, synthesized at the end of the ‘first three minutes’,
are in good overall agreement with the primordial abundances inferred
from observational data, thus validating the standard hot Big-Bang
cosmology (see [6] for a review). This is particularly impressive
given that these abundances span nine orders of magnitude – from
4He/H ∼ 0.08 down to 7Li/H ∼ 10−10 (ratios by number). Thus BBN
provides powerful constraints on possible deviations from the standard
cosmology [2], and on new physics beyond the Standard Model [3,4].

20.1. Theory

The synthesis of the light elements is sensitive to physical conditions
in the early radiation-dominated era at a temperature T ∼ 1 MeV,
corresponding to an age t ∼ 1 s. At higher temperatures, weak
interactions were in thermal equilibrium, thus fixing the ratio of
the neutron and proton number densities to be n/p = e−Q/T ,
where Q = 1.293 MeV is the neutron-proton mass difference.
As the temperature dropped, the neutron-proton inter-conversion
rate, Γn↔p ∼ G2

FT 5, fell faster than the Hubble expansion rate,
H ∼

√
g∗GN T 2, where g∗ counts the number of relativistic particle

species determining the energy density in radiation (see ‘Big Bang
Cosmology’ review). This resulted in departure from chemical
equilibrium (‘freeze-out’) at Tfr ∼ (g∗GN/G4

F)1/6 # 1 MeV. The
neutron fraction at this time, n/p = e−Q/Tfr # 1/6, is thus sensitive
to every known physical interaction, since Q is determined by both
strong and electromagnetic interactions while Tfr depends on the
weak as well as gravitational interactions. Moreover, the sensitivity
to the Hubble expansion rate affords a probe of e.g., the number of
relativistic neutrino species [7]. After freeze-out, the neutrons were
free to β-decay, so the neutron fraction dropped to n/p # 1/7 by the
time nuclear reactions began. A simplified analytic model of freeze-out
yields the n/p ratio to an accuracy of ∼ 1% [8,9].

The rates of these reactions depend on the density of baryons
(strictly speaking, nucleons), which is usually expressed normalized to
the relic blackbody photon density as η ≡ nb/nγ . As we shall see, all
the light-element abundances can be explained with η10 ≡ η × 1010

in the range 5.1–6.5 (95% CL). With nγ fixed by the present CMB
temperature 2.725 K (see ‘Cosmic Microwave Background’ review),
this can be stated as the allowed range for the baryon mass density
today, ρb = (3.5–4.5) × 10−31 g cm−3, or as the baryonic fraction of
the critical density, Ωb = ρb/ρcrit # η10h−2/274 = (0.019–0.024)h−2,
where h ≡ H0/100 km s−1 Mpc−1 = 0.72 ± 0.08 is the present Hubble
parameter (see Cosmological Parameters review).

The nucleosynthesis chain begins with the formation of deuterium
in the process p(n, γ)D. However, photo-dissociation by the high
number density of photons delays production of deuterium (and
other complex nuclei) well after T drops below the binding energy
of deuterium, ∆D = 2.23 MeV. The quantity η−1e−∆D/T , i.e., the
number of photons per baryon above the deuterium photo-dissociation
threshold, falls below unity at T # 0.1 MeV; nuclei can then begin to
form without being immediately photo-dissociated again. Only 2-body
reactions, such as D(p, γ)3He, 3He(D, p)4He, are important because
the density by this time has become rather low – comparable to that
of air!

Nearly all the surviving neutrons when nucleosynthesis begins end
up bound in the most stable light element 4He. Heavier nuclei do not
form in any significant quantity both because of the absence of stable
nuclei with mass number 5 or 8 (which impedes nucleosynthesis via
n4He, p4He or 4He4He reactions), and the large Coulomb barriers
for reactions such as T(4He, γ)7Li and 3He(4He, γ)7Be. Hence the
primordial mass fraction of 4He, conventionally referred to as Yp, can
be estimated by the simple counting argument

Yp =
2(n/p)
1 + n/p

# 0.25 . (20.1)
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as
predicted by the standard model of Big-Bang nucleosynthesis
[11] − the bands show the 95% CL range. Boxes indicate
the observed light element abundances (smaller boxes: ±2σ
statistical errors; larger boxes: ±2σ statistical and systematic
errors). The narrow vertical band indicates the CMB measure of
the cosmic baryon density, while the wider band indicates the
BBN concordance range (both at 95% CL). Color version at end
of book.

There is little sensitivity here to the actual nuclear reaction rates,
which are, however, important in determining the other ‘left-over’
abundances: D and 3He at the level of a few times 10−5 by number
relative to H, and 7Li/H at the level of about 10−10 (when η10
is in the range 1–10). These values can be understood in terms of
approximate analytic arguments [9,10]. The experimental parameter
most important in determining Yp is the neutron lifetime, τn, which
normalizes (the inverse of) Γn↔p. The experimental uncertainty in τn
used to be a source of concern, but has been reduced substantially:
τn = 885.7 ± 0.8 s (see N Baryons Listing).

The elemental abundances shown in Fig. 20.1 as a function of η10
were calculated [11] using an updated version [12] of the Wagoner
code [1]; other modern versions [13,14] are publicly available. The
4He curve includes small corrections due to radiative processes at
zero and finite temperatures [15], non-equilibrium neutrino heating
during e± annihilation [16], and finite nucleon mass effects [17];
the range reflects primarily the 2σ uncertainty in the neutron
lifetime. The spread in the curves for D, 3He, and 7Li corresponds
to the 2σ uncertainties in nuclear cross sections, as estimated by
Monte Carlo methods [18–19]. The input nuclear data have been
carefully reassessed [11, 20-23], leading to improved precision in the
abundance predictions. In particular, the uncertainty in 7Li/H at
interesting values of η has been reduced recently by a factor ∼ 2, a
consequence of a similar reduction in the error budget [24] for the
dominant mass-7 production channel T (4He, γ)7Be. Polynomial fits
to the predicted abundances and the error correlation matrix have
been given [19,25]. The boxes in Fig. 20.1 show the observationally
inferred primordial abundances with their associated statistical and
systematic uncertainties, as discussed below.

NB: both approaches 
assume validity of TUNL-
NDG tables 
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9B analysis: included data 

¨  6Li+3He elastic Buzhinski et.al., Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.43, p.158 (1979) 
¤  Differential cross section 
¤  1.30 MeV < E(3He) < 1.97 MeV 

¨  6Li+3He     p+8Be* Elwyn et.al., Phys. Rev. C 22, 1406 (1980) 
¤  Integrated cross section 
¤  Quasi-two-body, excited-state, summed final channel 
¤  0.66 MeV < E(3He) < 5.00 MeV 

¨  6Li+3He     d+7Be D.W. Barr & J.S. Gilmore, unpublished (1965) 
¤  Integrated cross section 
¤  0.42 MeV < E(3He) < 4.94 MeV 

¨  6Li+3He       +9B Aleksic & Popic, Fizika 10, 273-278 (1978) 
¤  Integrated cross section 
¤  0.7 MeV < E(3He) < 0.825 MeV 
¤  New to 9B analysis 

¨  New evaluation 
¤  Separate 8Be* states 

n  2+@200 keV [16.9 MeV], 1+@650 keV [17.6 MeV], 1+@1.1 MeV[18.2 MeV] 
¤  n+8B: Ethresh(3He) = 3 MeV 
¤  Simultaneous analysis with 9Be mirror system 

�

Data accessed via 
EXFOR/CSISRS 
database (C4 format) 
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R-matrix configuration in EDA code 

EDA 27

A1A ⇡
2 t↵+ n6Li+ n6Li*+ d 5He�

@
@

@@`

S
1
2

3
2

1
2

7
2

5
2

5
2

3
2

1
2

0 2S1/2
4S3/2

2S1/2
8S7/2

6S5/2
6S5/2

4S3/2
2S1/2

1 2P3/2,1/2
4P5/2,3/2,1/2

2P3/2,1/2
8P9/2,7/2,5/2

6P7/2,5/2,3/2

2 2D5/2,3/2
4D7/2,5/2,3/2,1/2

2D5/2,3/2
8D11/2,9/2,7/2,5/2,3/2

6D9/2,7/2,5/2,3/2,1/2

3 2F7/2,5/2
4F9/2,7/2,5/2,3/2

2F7/2,5/2
8F13/2,11/2,9/2,7/2,5/2,3/2,1/2

6F11/2,9/2,7/2,5/2,3/2,1/2

4 2G9/2,7/2
4G11/2,9/2,7/2,5/2

2G9/2,7/2
8G15/2,13/2,11/2,9/2,7/2,5/2,3/2,1/2

6G13/2,11/2,9/2,7/2,5/2,3/2

5 2H11/2,9/2
4H13/2,11/2,9/2,7/2

2H11/2,9/2
8H17/2,15/2,13/2,11/2,9/2,7/2,5/2,3/2

6H15/2,13/2,11/2,9/2,7/2,5/2

TABLE VIII: The LS terms and their relevance for 7Li. S is the channel spin, ` is orbital angular momentum,

the partial waves are given by spectroscopic notation, 2S+1LJ . The `max parameter for the channels 1� 4

are given by: 5,3,1,0; thus, the excluded partial waves are in blue. The #4 channel, d5He�, includes only

` = 0 partial waves and the (repetitive) excluded partial waves (that would appear in blue) aren’t shown

for that channel. Note that the channel spins in each channel are listed from highest to lowest from left to

right.

A1A ⇡
2

3He6Li+ p8Be*+ d7Be�

@
@

@@`

S
3
2

1
2

5
2

3
2

5
2

3
2

1
2

0 4S3/2
2S1/2

6S5/2
4S3/2

6S5/2
4S3/2

2S1/2

1 4P5/2,3/2,1/2
2P3/2,1/2

6P7/2,5/2,3/2
4P5/2,3/2,1/2

6P7/2,5/2,3/2
4P5/2,3/2,1/2

2P3/2,1/2

2 4D7/2,5/2,3/2,1/2
2D5/2,3/2

6D9/2,7/2,5/2,3/2,1/2
4D7/2,5/2,3/2,1/2

6D9/2,7/2,5/2,3/2,1/2
4D7/2,5/2,3/2,1/2

2D5/2,3/2

TABLE IX: The LS terms and their relevance for 9B. The `max parameter for the channels 1� 3 are given

by: 2,1,1, respectively; excluded partial waves (for the current 9B configuration) are in blue.

The next block of data consists of kusize [=41 for 7

Li] lines of three-column data. These

are the channel radii, B parameters (related to the ln derivatives) and a third parameter that

is related to hard-sphere phase shift cancellation (usually zero). These parameters are

read-in by a partial wave ordering determined from an algorithm developed by Don Dodder and

John Gamble that is dependent on Table VIII.

The LS terms are given in Table VIII for included channels and partial waves for the 7Li run

(excluded partial waves for the 7Li run are shown in blue). Referring to the channels numerically,

from left to right in Table VIII, ie. 1 ! t↵+, 2 !

6Li+, 3 ! n6Li*+, 4 ! d 5He�. The LS terms

in Table VIII are generated by considering states in column-major order with ` = 0, . . . , `max,

labeling the row, S = |S
1

+ S
2

|, . . . , |S
1

� S
2

| labeling the columns (in each channel) and J =

|L+ S|, . . . , |L� S| a sub-index on each element.

Using this table, we construct the partial wave ordering relevant for the par file using the

following algorithm:

Hadronic channels (in blue, not included) 

Electromagnetic channel: � +9B
orp9b.resbr Tue Feb 26 13:54:49 2013 1

9b analysis (3he,p,d,g)                           3.15057E+00  19-Jul-2012    3 

     kp    a     j         radius           bc
      1    1 4s 3/2     7.50000000f       0.00000000
      2    1 4d 3/2     7.50000000f       0.00000000
      3    1 2d 3/2     7.50000000f       0.00000000
      4    2 4s 3/2     5.50000000f       0.00000000
      5    3 6p 3/2     7.00000000f       0.00000000
      6    3 4p 3/2     7.00000000f       0.00000000
      7    3 2p 3/2     7.00000000f       0.00000000
      8    4 E1 3/2    50.00000000f       0.00000000
      9    1 4p 5/2     7.50000000f       0.00000000
     10    2 6p 5/2     5.50000000f       0.00000000
     11    2 4p 5/2     5.50000000f       0.00000000
     12    3 6s 5/2     7.00000000f       0.00000000
     13    4 M1 5/2    50.00000000f       0.00000000
     14    1 4p 3/2     7.50000000f       0.00000000
     15    1 2p 3/2     7.50000000f       0.00000000
     16    2 6p 3/2     5.50000000f       0.00000000
     17    2 4p 3/2     5.50000000f       0.00000000
     18    3 4s 3/2     7.00000000f       0.00000000
     19    4 M1 3/2    50.00000000f       0.00000000
     20    1 4p 1/2     7.50000000f       0.00000000
     21    1 2p 1/2     7.50000000f       0.00000000
     22    2 4p 1/2     5.50000000f       0.00000000
     23    3 2s 1/2     7.00000000f       0.00000000
     24    4 M1 1/2    50.00000000f       0.00000000
     25    1 4d 7/2     7.50000000f       0.00000000
     26    3 6p 7/2     7.00000000f       0.00000000
     27    1 4d 5/2     7.50000000f       0.00000000
     28    1 2d 5/2     7.50000000f       0.00000000
     29    2 6s 5/2     5.50000000f       0.00000000
     30    3 6p 5/2     7.00000000f       0.00000000
     31    3 4p 5/2     7.00000000f       0.00000000
     32    4 E1 5/2    50.00000000f       0.00000000
     33    1 4d 1/2     7.50000000f       0.00000000
     34    1 2s 1/2     7.50000000f       0.00000000
     35    3 4p 1/2     7.00000000f       0.00000000
     36    3 2p 1/2     7.00000000f       0.00000000
     37    4 E1 1/2    50.00000000f       0.00000000
     38    2 6p 7/2     5.50000000f       0.00000000

                        matrix 1,  3/2+
     39                10.00000000f       1.40235000   
     41    1 4s         3.96704984        0.00000000f  
     41    1 4d         0.00000000f       0.00000000f  
     41    1 2d         0.00000000f      -0.02221017   
     41    2 4s        -0.67805660        0.12501734   
     41    3 6p        -4.39124539        0.76151029   
     41    3 4p         0.00000000f       0.00000000f  
     41    3 2p         0.00000000f       0.00000000f  
     41    4 E1         0.00000000f       0.00000000f  

                        matrix 2,  5/2-
     41                -5.00000000f  
     42    1 4p         2.84657295   
     42    2 6p         1.15249790   
     42    2 4p         0.00000000f  
     42    3 6s         3.00956276   
     42    4 M1         0.00000000f  

                        matrix 3,  3/2-
     42                10.00000000f       4.00000000f     -11.86710500f       1.2213516
5   
     46    1 4p         5.58244720f      -0.81349796        2.18071790f      -0.3452288
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     kp    a     j         radius           bc
      1    1 4s 3/2     7.50000000f       0.00000000
      2    1 4d 3/2     7.50000000f       0.00000000
      3    1 2d 3/2     7.50000000f       0.00000000
      4    2 4s 3/2     5.50000000f       0.00000000
      5    3 6p 3/2     7.00000000f       0.00000000
      6    3 4p 3/2     7.00000000f       0.00000000
      7    3 2p 3/2     7.00000000f       0.00000000
      8    4 E1 3/2    50.00000000f       0.00000000
      9    1 4p 5/2     7.50000000f       0.00000000
     10    2 6p 5/2     5.50000000f       0.00000000
     11    2 4p 5/2     5.50000000f       0.00000000
     12    3 6s 5/2     7.00000000f       0.00000000
     13    4 M1 5/2    50.00000000f       0.00000000
     14    1 4p 3/2     7.50000000f       0.00000000
     15    1 2p 3/2     7.50000000f       0.00000000
     16    2 6p 3/2     5.50000000f       0.00000000
     17    2 4p 3/2     5.50000000f       0.00000000
     18    3 4s 3/2     7.00000000f       0.00000000
     19    4 M1 3/2    50.00000000f       0.00000000
     20    1 4p 1/2     7.50000000f       0.00000000
     21    1 2p 1/2     7.50000000f       0.00000000
     22    2 4p 1/2     5.50000000f       0.00000000
     23    3 2s 1/2     7.00000000f       0.00000000
     24    4 M1 1/2    50.00000000f       0.00000000
     25    1 4d 7/2     7.50000000f       0.00000000
     26    3 6p 7/2     7.00000000f       0.00000000
     27    1 4d 5/2     7.50000000f       0.00000000
     28    1 2d 5/2     7.50000000f       0.00000000
     29    2 6s 5/2     5.50000000f       0.00000000
     30    3 6p 5/2     7.00000000f       0.00000000
     31    3 4p 5/2     7.00000000f       0.00000000
     32    4 E1 5/2    50.00000000f       0.00000000
     33    1 4d 1/2     7.50000000f       0.00000000
     34    1 2s 1/2     7.50000000f       0.00000000
     35    3 4p 1/2     7.00000000f       0.00000000
     36    3 2p 1/2     7.00000000f       0.00000000
     37    4 E1 1/2    50.00000000f       0.00000000
     38    2 6p 7/2     5.50000000f       0.00000000

                        matrix 1,  3/2+
     39                10.00000000f       1.40235000   
     41    1 4s         3.96704984        0.00000000f  
     41    1 4d         0.00000000f       0.00000000f  
     41    1 2d         0.00000000f      -0.02221017   
     41    2 4s        -0.67805660        0.12501734   
     41    3 6p        -4.39124539        0.76151029   
     41    3 4p         0.00000000f       0.00000000f  
     41    3 2p         0.00000000f       0.00000000f  
     41    4 E1         0.00000000f       0.00000000f  

                        matrix 2,  5/2-
     41                -5.00000000f  
     42    1 4p         2.84657295   
     42    2 6p         1.15249790   
     42    2 4p         0.00000000f  
     42    3 6s         3.00956276   
     42    4 M1         0.00000000f  

                        matrix 3,  3/2-
     42                10.00000000f       4.00000000f     -11.86710500f       1.2213516
5   
     46    1 4p         5.58244720f      -0.81349796        2.18071790f      -0.3452288

! E3/2
1 ,M5/2

1 ,M3/2
1 ,M1/2

1 , E5/2
1 , E1/2

1

Full model space: 
state number; 
channel pair; 
LS; J; channel  
radius [fm] 

(1) (2) (3) 

Ethr(CM, MeV)   16.6                           16.7                                     16.5   



Observable fit: 3He+6Li elastic DCS  
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Observable fit: 6Li(3He,p)8Be* integrated x-sec 
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Observable fit: 6Li(3He,d)7Be integrated x-sec 
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Observable fit: 6Li(3He,γ)9B integrated x-sec 
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9B analysis result: resonance structure 
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  3 4p     0.0000          0.92257            0.0000          0.0000    
  4 E1     0.0000          0.94476            0.0000          0.0000    
 strength=   0.98303, rate ratio=   1.00000
 frac par=   1.00000

 matrix  7, 1/2+
   1.90000  -2.70000    1.86827  -2.75936
   1.82059  -2.72312    1.82063  -2.72313
   1.82062  -2.72316    1.82062  -2.72316

         er= 1.8206    -2.7232    
 state   red. width amp.   penetrability   partial width   partial rate
  1 4d    0.59327E-01      0.75198E-01       0.52935E-03     0.14041E-01
  1 2s    0.80969          0.35265E-01       0.46240E-01      3.8751    
  3 4p    0.78580          0.11534           0.14244          2.8561    
  3 2p     0.0000          0.11534            0.0000          0.0000    
  4 E1     0.0000          0.25676            0.0000          0.0000    
 strength=   0.03474, rate ratio=   1.00000
 frac par=   1.00000
            Summary of Resonance Levels:

   Ex(MeV)     Jpi   Gamma(keV)  Er(MeV)   ImEr(MeV)    E(3He)    Strength
  16.46539     1/2-    768.46    -.1369    -0.3842      -0.2054   0.06 weak
  17.11317     1/2-      0.14    0.5109    -0.6771E-04   0.7664   1.00 strong
  17.20115     5/2-    871.63    0.5989    -0.4358       0.8984   0.40 weak
  17.28086     3/2-    147.78    0.6785    -0.0739       1.0178   0.77 strong
  17.66538     5/2+     33.33    1.0631    -0.0167       1.5947   0.98 strong
  17.83619     7/2+   2036.21    1.2339    -1.0181       1.8509   0.15 weak
  17.84773     3/2-     42.52    1.2454    -0.0213       1.8681   0.97 strong
  18.04821     3/2+    767.11    1.4459    -0.3836       2.1689   0.54 weak
  18.42292     1/2+   5446.32    1.8206    -2.7232       2.7309   0.03 weak
  18.67716     1/2-  10278.41    2.0749    -5.1392       3.1124   0.15 weak
  19.60923     3/2-   1478.22    3.0069    -0.7391       4.5104   0.52 weak

Table 9.13: Energy levels of 9B

Ex
a (MeV± keV) Jπ; T Γc.m. (keV) Decay Reactions

g.s. 3
2

−; 1
2

0.54 ± 0.21 p 1, 2, 3, 4, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16,
17

≈ 1.6 b p, (α) 3, 4, 8, 13
2.361 ± 5 5

2

−; 1
2

81 ± 5 p, α 1, 2, 4, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17

2.75 ± 300 c 1
2

−; 1
2

3130 ± 200 p 3, 7, 10
2.788 ± 30 5

2

+; 1
2

550 ± 40 p, α 4, 7, 10, 11, 13, 15, 16
4.3 ± 200 d 1600 ± 200 7

6.97 ± 60 7
2

−; 1
2

2000 ± 200 p 4, 7, 11, 14, 15, 16
11.65 ± 60 e (7

2
)−; 1

2
800 ± 50 p 11, 13, 15, 16

12.19 ± 40 f 5
2

−; 1
2

450 ± 20 p, α 4, 7, 10, 14
14.01 ± 70 π = −; 1

2
390 ± 110 p, α 4, 7, 10, 14

14.6550 ± 2.5 3
2

−; 3
2

0.395 ± 0.042 γ, p 4, 7, 8, 10, 14
14.7 ± 200 g (5

2
)−; 1

2
1350 ± 200 11

15.29 ± 40 T = 1
2

14
15.58 ± 40 T = 1

2
14

16.024 ± 25 T = (1
2
) 180 ± 16 4, 14

16.71 ± 100 h (5
2

+
); (1

2
) 7

17.076 ± 4 1
2

−; 3
2

22 ± 5 (γ, 3He) 1, 14
17.190 ± 25 120 ± 40 p, d, 3He 4, 5, 14
17.54 ± 100 h,i (7

2

+
); (1

2
) 7

17.637 ± 10 i 71 ± 8 p, d, 3He, α 1, 4, 5, 14
a See reactions 7 and 8 for additional states and other values.
b A wide range of excitation energies and widths have been given from searches for the analog of the
1.68 MeV 1

2

+ state of 9Be. See (1987BA54, 1992CA31, 1995TI06, 1996BA22, 1999EF01).
c Analog to 9Be*(2.78). See (1985PU1A, 1995TI06, 2000GE09).
d See (1985PU1A). A level listed at Ex = 4.8MeV in (1988AJ01) was based on (1986AR14, 1987KA36).
e See (1974AJ01, 1985PU1A). Width from (1968KU04).
f See (1985PU1A, 2000GE09, 2001BE51).
g From (1968KU04).
h From (1985PU1A). See (1991DI03).
i These two levels may not be distinct.
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TUNL-NDG/ENSDF 
parameters 

NB: no strong resonance seen 
~100 keV of  3He+6Li threshold 

2014 May 15 Paris BBN 



Summary 

¨ Provided overview of current work in the LANL light nuclear 
reaction program 

¨ Emphasize the utility of multichannel, unitary parametrization of 
light nuc data 
¨  17O norm issue: are Bair & Haas ‘73 data conclusive? 
¨  9B resonance spectrum:  

¨ no resonances in 9B that reside within ~200 (~100) keV of the d+7Be 
(3He+6Li) threshold with ‘large’ widths 10—40 keV 

¨ Appears to rule out scenarios considered by Cyburt & Pospelov (2009) 
that low-lying, robust resonance in 9B could explain the “Li problem” 



End Lecture II 

2014 May 15 Paris BBN 



BSMs scenarios 

¨  New particles: WIMPs, Axion, SUSY, … 
¨  GR modifications: new propagating DsOF; scalar-tensor 

¨  Modifications of Cosmological SM: non-zero νchem. pot.; non-
equil. phenomena 

¨  Variation of fundamental couplings 

¨  Cosmic variance 
¨  Neutrino sector 

¤  solar, atmospheric & reactor neutrinos oscillation experiment prove at 
least two neutrinos have mass 

¤  “sterile neutrinos”: mass à neutrinos have left- & right-hand spin states 
n  only left-hand neutrinos interact in SM 

¤  Massless neutrinos (recall) 
n  have only one spin state 

2014 May 15 Paris BBN 



Neutrino Mass: what we know and don’t know 

2014 May 15 Paris BBN 

We know the mass-squared differences: 

We do not know the absolute masses or the mass hierarchy: 

�m2
atm ⇡ 2.4⇥ 10�3 eV2

�m2
� ⇡ 7.6⇥ 10�5 eV2



Neutrino mass mixing 101 

¨  Take-away message from experiments: “neutrinos have mass” 
¤  neutrino flavor eigenstates 

n  interact via left-hand (L) components 
n  Mass term, however, mixes L & R:  

2014 May 15 Paris BBN 

|⌫ei, |⌫µi, |⌫⌧ i

 ̄e�µ
1
2 (1� �5) ⌫e =  ̄e,L�µ e,L

 ̄e e =  ̄e,R e,L +  ̄e,L e,R

⇥12, ⇥23, ⇥13, �

Um = U23 U13 U12 M

�12 ⇡ 0.59+0.02
�0.015

�23 ⇡ 0.785+0.124
�0.124 ⇡ ⇥

4
�13 ⇡ 0.154+0.065

�0.065

� = CP violating phase =?

¨  Mass mixing matrix 
¤  Pontecorvo-Maki-Nakagawa-Sakata 

¤  neutrino flavor oscillation: confirmed! 



Sterile* neutrinos 

¨  What are they? 
¤  Related to right-handed components 

¨  Wherefore? 
¤  Mass à right-handed neutrinos à must exist by Lorentz invariance 

n  but may have mass modified by interactions 

¤  Non-interacting(?!): only example of particles that interact solely via GR 

¤  Interactions à necessarily beyond SM physics 

¨  What (if anything) do they do? 
¤  perhaps they mix with active (e,μ,τ) neutrinos? 

¤  then they’re not really “sterile” 

¨  Why would we want (need?) them? 
¤  leptogenesis; baryogenesis 
¤  BBN & Neff 

2014 May 15 Paris BBN 

|⌫ei = cos ✓|⌫1i+ sin ✓|⌫2i
|⌫si = � sin ✓|⌫1i+ cos ✓|⌫2i

*Coined by Bruno Pontecorvo ’67; 
“infertile” or “aseptic”? 



Hints for light sterile neutrinos? 

¨  mini-BooNE 
¤  neutrino oscillation experiment 

¤  appearance with 
¤  result inconsistent with flavor oscillation alone 

¨  Neutrino reactor anomaly 
¤  3σ deficit neutrinos detected in short-baseline (<100m) reactor 
νexperiments 

¤  A. Hayes et al. (2013) find “large corrections” 

¨  Extra radiation at photon-decoupling (Neff) ??  
¤   CMB observations (PolarBear, ACT, SPT, Planck, CMBPol,…) 
¤  ‘extra’ RED could reconcile H0 and σ8 inferred from CMB and 

astronomical observation 

2014 May 15 Paris BBN 

⌫e ! ⌫s ! ⌫µ

�m2 ⇠ 1 eV2

⌫̄e deficit from ⌫̄e ! ⌫̄s (???)� a disappearance experiment



Dark radiation 

¨  γ-decoupling (last scattering) T ~ 0.2 eV (z~1000) 
¨  Neff: “effective number of neutrino degrees of freedom” 

¤  A misnomer; it refers to any/all relativistic particles at decoupling 

¤  ‘Baby’ formula: 
n  We’ve done this better… 

¨  CSM+SMPP à predicts Neff = 3.046 [Dicus et. al. ’83; Dolgov, Hansen, Semikoz ‘97, ’99; Gnedin2 ’98,…] 

¤  annihilation of neutrinos-antineutrinos at weak decoupling 
¤  QED corrections 

¨  Measurements 
¤  WMAP9 (2012): 3.26(35); Planck (2013): 3.30(50); ACT(2013): 

2.79(56); SPT-SZ (2012): 3.71(35) 

¨  Sterile neutrinos can affect the physics of dark radiation 

2014 May 15 Paris BBN 

⇢rad = 2
h
1 + 7

8

�
4
11

�4/3
Neff

i
⇡2

30T
4
�



CMB as a probe of steriles: caveats 

¨  Sterile neutrinos can decay out-of-equilibrium 
¤  “dilution”: steriles are “sub-weakly” interacting 

¤  non-thermal energy spectra/number densities 

¨  Care must be applied when 
¤  computing Neff: non-equilibrium effects; relativistic vs. non-relativistic 

kinematics 
¤  determining Neff and YP (mass fraction 4He) 

n  current Planck collab. procedure is inconsistent w.r.t. Neff and YP 
n  in preparation: “Neutrino physics in the era of precision cosmology” 

¨  neutron/proton ratio (and therefore 4He) 
¤  competing weak reaction rates determine YP(4He) 
¤  very sensitive to neutrino energy spectra 

2014 May 15 Paris BBN 

⌫e + n $ p+ e�

⌫̄e + p $ n+ e+

n $ p+ e� + ⌫̄e



Dilution physics (I) 

¨  Consider the presence of νs 
¤  heavy (~100 MeV), unstable (~10 s) 

¨  Thermal effects 
¤  Assume interaction of steriles sufficiently strong at T~few GeV to 

maintain thermal equilibrium with e, ν, γ,… 

¤  Further, the sterile decouples at T~few MeV 
n  assume relativistic kinematics throughout 

n  proper entropy is conserved: s a3 = constant (FLRW) 
n  sterile neutrino temperature distribution cooled or “diluted” 

n  number density comparable to photons (since lifetime chosen 10’s secs)  
n  n(νs) ~ 0.1 n(γ) 

¨  NB: νs is out-of-equilibrium with  

2014 May 15 Paris BBN 

T⌫s(awdc)

T�(awdc)
=

✓
g⇤(awdc)

g⇤(a⌫sdc)

◆1/3

=

✓
10.75

61.75

◆1/3

⇡ 1

1.8

s =
⇢+ p

T
= g⇤(a)

2⇡2

45
T 3

eµ⌫�



Dilution physics (II) 

¨  Heavy particle decay during/after weak decoupling 
¤  Interactions 

 

2014 May 15 Paris BBN 

⌫s ! 3⌫i ⌫s ! ⌫i + e� + e+ ⌫s ! ⌫ + ⇡0

⌫s ! ⌫i + � ⌫s ! ⌫ + µ+ + µ� ⌫s ! ⇡± + e⌥

⌫s ! ⇡± + µ⌥

Exothermic Endothermic 

9

photon ratio, η ≡ nb/nγ , is

s =

(

π4

45 ζ (3)

)

gs
η

(32)

≈
(

5.895× 109
)

(gs
2

)

(

6.11× 10−10

η

)

, (33)

where gs is the statistical weight in relativistic par-
ticles carrying the entropy, so that S = S/nb =
(2π2/45)gsT 3/nb, where nb and nγ are the proper num-
ber densities of baryons and photons, respectively. In
a standard universe at temperatures low enough that
baryon number is conserved and with no particle de-
cay, nuclear reactions, shocks, etc., s would be constant.
Note, however, that even in this limit the relation be-
tween η and s is not constant because gs changes with
time/temperature. The Wagoner-Fowler-Hoyle h param-
eter is defined as h ≡ nb/(NAT 3

9 ), where NA is Avo-
gadro’s number and T9 ≡ T/109 K. With this definition
the entropy-per-baryon is s ≈ 1.213 × 105(gs/2)/h and
h = (3.368 × 104 g cm−3) η, and the baryon rest mass
density is ρb[g cm−3] = T 3

9 h.
Decay of decoupled, out of equilibrium sterile neutrinos

will result in entropy being added to the plasma. The
rate at which entropy-per-baryon is added is

ds

dt
=

ms

T
· f · x0 · e−(t−t0)/τ ·

1

τ
, (34)

where f is the fraction of the sterile neutrino decay en-
ergy (the rest mass ms) which thermalizes in the plasma.
In Eq. (34) the number of sterile neutrinos (νs + ν̄s) per
baryon at time t0 is x0 = (3/4)(Tνs/T )

3
0/η0, where the

zero subscript means these quantities are evaluated at
t0, the age of the universe at which the calculation is
started. In the calculations to follow we take t0 suffi-
ciently early (e.g., well above the weak decoupling tem-
perature) that prior decay can be neglected, in which
case x0 ≈ (3/4)(1/1.79)3/η0.
Sterile neutrino decay adds entropy and so decreases

the baryon-to-photon ratio, but in the end, at temper-
atures far below those characteristic of the BBN epoch,
we must get the CMB-determined values of these quan-
tities, e.g., ηWMAP ≈ 6.11 × 10−10 as measured by
WMAP [70] (used to scale Eq. 33 above), implying
sWMAP ≈ 5.895 × 109. Therefore, scenarios in which
entropy is added through particle decay must start out
with a higher value of η0 (lower value of s0).
We have solved Eq. 34 with a modified early universe

expansion and Big Bang Nucleosynthesis code which
treats all thermodynamic variables self consistently with
the Friedman equation and all relevant weak interaction
and sterile neutrino decay processes.
Figure 4 shows the temperature of the plasma and the

decoupled active neutrino seas as functions of decoupled
active neutrino temperature, for several different scenar-
ios, as calculated with our code. One scenario shown in
this figure is just the standard radiation-dominated case,

νs

τ

FIG. 4: Temperature versus decoupled active neutrino tem-
perature for several scenarios as labeled. The decoupled ac-
tive neutrino temperature (dashed line), decreasing to the left
here, is inversely proportional to scale factor, which therefore
increases to the right. The dash-dot-dot (blue) line shows the
standard expansion with no sterile neutrinos, exhibiting the
transfer of entropy from electron/positron pairs to photons
as the former annihilate. The lighter solid (red) curve shows
what happens in a scenario with a sterile neutrino with rest
mass ms = 275MeV and lifetime τ = 100 s.

where e± annihilation occurs as electromagnetic equilib-
rium shifts with expansion, transferring entropy to the
photons, but not to the active neutrinos. This results in
the apparent shallowing of the slope of the plasma (pho-
ton) temperature near T ∼ 100 keV. Entropy generated
by sterile neutrino decay results in a similar, albeit more
dramatic, phenomenon as is evident in Fig. 4, where we
show a scenario with particular sterile neutrino rest mass
ms = 275MeV and lifetime τ = 100 s.

C. Dilution

It is evident in the sterile neutrino decay scenario de-
picted in Fig. 4 that the fossil thermal neutrino relic
background winds up considerably colder relative to the
photons than in the standard cosmology case. This is
dilution, a direct result of entropy generation, and anal-
ogous to what happens in the post-inflation re-heating
epoch. In the cases we consider here the entropy is car-
ried by relativistic particles. The ratio of the after-to-
before entropies-per-baryon we designate as the dilution

¨  Entropy production 
¤  due to out-of-equilibrium decay 

¤  plasma cools slower than decoupled actives 

¨  Dilution 
¤  decoupled actives diluted down 

¤  Two effects 
n  coupling to plasma à reduction in Neff 

n  coupling to actives à increase Neff 

 



Dilution phyiscs (III) 

¨  Photons thermalize 
¤  sterile neutrino decay (ms< few GeV) 

¨  But active neutrinos may not 
¤  energy/decay-epoch dependent 
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⌫s ! ⇡0 + ⌫e,µ,� ! 2� + ⌫e,µ,�
�s ! ⇥+ + e�

µ+ + �µ

e+ + �̄µ + �e

! 2� + 3⌫

�s ! ⇥+ + µ� ! 2� + 5⌫
10

τ

FIG. 5: Entropy-per-baryon (in units of Boltzmann’s con-
stant kb) versus photon (plasma) temperature for the stan-
dard cosmology case (constant co-moving entropy, dashed
line) and for a scenario with a sterile neutrino with rest mass
ms = 275MeV and lifetime τ = 100 s (solid line). Begin-
ning and ending entropy-per-baryon for the latter case as in-
dicated.

factor

F ≡
Sfinal

Sinitial
=

gsf T 3
f a3f

gsi T 3
i a3i

, (35)

where the indices i and f indicate initial (prior to any ster-
ile neutrino decay) and final (long after sterile neutrino
decay) values of statistical weight in relativistic particles
gs, photon temperature T , and scale factor a, respec-
tively. Standard cosmology, with a fixed co-moving en-
tropy, will have F = 1. The relationship between scale
factor and temperature for decoupled particles (e.g., neu-
trinos) is Tνf af = Tνi ai, and we assume that the initial
photon and neutrino temperatures are the same, so that
the ratio of the final neutrino temperature to the final
photon temperature is

Tνf

Tf
=

1

F
1
3

·
(

gsf
gsi

)
1
3

(36)

=
1

F
1
3

·
(

2

2 + 7
8 · 4

)
1
3

=
1

F
1
3

·
(

4

11

)
1
3

, (37)

where in the last line we take as an example initial
and final temperatures which bracket the BBN and e±-
annihilation epochs. For the standard cosmology case,

FIG. 6: Contours (as labeled) of dilution factor F (the ratio
of final-to-initial entropy-per-baryon) are given as functions
of sterile neutrino rest mass in MeV and sin2 2θ, where θ is
the characteristic effective two-by-two vacuum mixing angle
between active neutrino species and the sterile species.

where F = 1, we recover the usual relationship be-
tween the background neutrino temperature and the
photon/plasma temperature at, e.g., photon decoupling,

Tνf/Tf = (4/11)
1
3 ≈ 1/1.4, i.e., the final neutrino tem-

perature should be 40% lower than the photon temper-
ature. But if entropy has been generated by out-of-
equilibrium particle decay we will have F > 1, with a con-
sequently lower ratio of background neutrino-to-photon
temperatures. Therefore, for example, the ratio of the
neutrino temperature in the diluted scenario at the pho-
ton decoupling epoch to the neutrino temperature at pho-
ton decoupling in the standard cosmology (F = 1) case
is

T γ dec
ν

T γ dec stan
ν

= F−1/3. (38)

The photon decoupling epoch is when the CMB photon
temperature is T ≈ 0.2 eV.
Figure 5 shows the history of entropy addition for a

particular case (sterile neutrino rest mass ms = 275MeV
and lifetime τ = 100 s) and for a standard constant co-
moving entropy cosmology. For this case F = (5.9 ×
109)/(3.3 × 108) ≈ 18, with F

1
3 ≈ 2.6, which implies a

ratio of final neutrino and photon temperatures 2.6 times
lower than the standard case, roughly 1/3.6.

¨  Heavy sterile neutrino decay 
¤  dilution of background (CνB) 

¤  generation of radiation energy density: Neff 

¤  prodigious entropy production 



Non-equilibrium distribution of CνB 
13
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FIG. 10: The relic neutrino energy spectrum for the particular case with ms = 275MeV and τ = 100 s. Here the neutrino
number density per co-moving scaled neutrino energy (dnν/dε in MeV3) is shown as a function of the dimensionless co-moving
scaled neutrino energy parameter ε = Eν/Tν for three components: the ordinary thermal background neutrinos (short-dashed,
blue line); sterile neutrino decay-generated neutrinos from the charged pion decay channels (solid, red line), and the π0 decay
channel (dashed, green line).

Neff . Perhaps BBN considerations will rule out these
sterile neutrino parameters, but we already have con-
straints on Neff from CMB considerations (WMAP7 [70]
reports Neff = 4.34+0.86

−0.88) which promise to get much bet-
ter with future observations. The current constraints,
while not very good, already serve to eliminate much of

the sterile neutrino parameter space depicted in Fig. 8
and Fig. 9, especially for the higher and lower sterile
neutrino rest masses on these figures and especially for
relatively longer lifetimes (lower effective vacuum active-
sterile mixing angles) on these plots.

Given the spectral energy distributions of the active
neutrinos resulting from the various sterile neutrino de-
cay channels [93, 94], we can use the above considera-
tions and calculate the actual spectrum of active neutri-
nos left over from sterile neutrino decay. Fig. 10 shows
the the relic neutrino energy spectrum for the particu-
lar case with ms = 275MeV and τ = 100 s. This fig-
ure shows three components to the relic neutrino back-
ground in this scenario: the ordinary thermal background
(e.g., see Ref.s [95, 96]); and the decay-generated neutri-
nos from the charged pion decay channels and the π0

decay channel. For the sterile neutrino lifetime in this
case, most of the decays will be where the age of the
universe is order t > 100 s, where the average thermal
neutrino energy will be Tν < 100 keV, but the average
decay neutrino energy will be more like 50 to 100MeV
in this case, roughly a thousand times the thermal neu-
trino energy. By the time of photon decoupling, the ratio

of the thermal background neutrino temperature to the
photon temperature in this case will be T γ dec

ν /T γ dec =

(4/11)(1/3) ·F−1/3 ≈ (4/11)1/3 ·(1/17.6)1/3 ≈ 0.27. Since
T γ dec ≈ 0.2 eV this implies that the average energy of the
thermal background neutrinos will be 3T γ dec

ν ∼ 0.16 eV,
barely large enough to assure that these species are rela-
tivistic at this epoch. The minimum neutrino mass eigen-
value is the square root of the atmospheric neutrino mass-
squared difference,

√

δm2
atm ≈ 0.055 eV. (The spectrum

shown in Fig. 10 remains correct even if the kinematics
of the neutrinos becomes non-relativistic, so long as Eν

is interpreted as the neutrino spacelike momentum mag-
nitude.) Note that the peak of the decay neutrino relic
spectrum is about a factor of 1000 larger than that of
the background thermal neutrinos. This implies that the
decay neutrinos have energies ∼ 160 eV at the photon
decoupling epoch. For a maximum neutrino mass eigen-
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• Heavy sterile dilutes the 
normal background neutrino 
spectrum 

• decay-generated spectrum 
~103 times more energetic 
than standard; never non-
relativistic 

• can’t detect neutrino rest mass 
cosmologically 

diluted	  ordinary	  thermal	  
neutrino	  background	  

heavy sterile decay-generated 
neutrino background 

The Big Question: what effect on BBN? YP 



Code capabilities & design 

¨  Capabilities 
¨  Boltzmann equation solver: two classes of Boltzmann equations 

n  Nucleosynthesis: Unitary Reaction Network for BBN (previous slides) 
n  Neutrino energy transport: new capability – never before achieved 

n  Various reactions result in seven evaluations of this triple integral 
n  Achieved short turn-around time by parallelization 

¨  Design 
¨  Modular code design for adaptability for public code release 

¨  Allow insertion of “physics packages” to test BSM (not just sterile ν’s) 
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I. COLLISION TERMS

Consider the two-body collision, 12 ! 34. Let pi (i = 1, . . . 4) be the momentum of

species i and Ei be the energy of species i. The scattering rate for particle 1 scattering on

particle 2 is d�
1

= dn
2

�v,

d�
1

=� s

(2E
1

)(2E
2

)
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f

2
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� P
3

� P
4

), (1)

where h|M|2i is the spin-averaged matrix element for the interaction 12 ! 34, fi = fi(Ei) is

the distribution function of species i and the Pi in the delta function represent the momentum

4-vectors for the reactants and products. s = 1/n! is a factor accounting for n identical

particles in the final state. The overall minus sign represents the fact that particles are

scattered out of the given energy bin. It is assumed that the distribution functions are

isotropic so that the energy is the only relevant quantity in determining the distribution

function. The number density of particles is given by

dni = fi(Ei)
d3pi

(2⇡)3

.

We can now write the collision term for scattering both into and out of species 1:

Df
1

Dt
=

Z
s

2E
1
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2

(2⇡)3(2E
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, p
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where D/Dt is the convective derivative, that in our case takes care of the redshifting of

momenta, and the function F (p) is a term that depends solely on the distribution functions,

F (p
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, p
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, p
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, p
4
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f
2
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)(1� f
4
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3
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),

which takes care of both scattering out of (first term) and in to (second term) the energy

bin denoted by E
1

.

A. Neutrino-Neutrino Scattering (⌫e-⌫e)

The matrix element for neutrino-neutrino (in particular ⌫e � ⌫e) scattering stems from

two neutral current diagrams, and can be determined to be

h|M|2i = (P
1

· P
2

)(P
3

· P
4

),

1
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.

The integral becomes
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Beware that E
min

and E
max

, the bounds of the dp
3

integral, depend on both p
2

and x = cos ✓
2

,

which means the integral is a truly nasty triple integral. This form is consistent with what

is done in Tubbs & Schramm 1975, Appendix B.

B. Neutrino-Neutrino Scattering (⌫e-⌫µ⌧)

The matrix element comes from just one neutral current diagram, so the matrix element

squared is one-fourth that of ⌫e-⌫e scattering. However, there is no factor of 1/2 to account

for identical particles in the final state, so the form of the collision term should be 1/2 that

of the ⌫e-⌫e scattering, with the appropriate species taken in the distribution function terms,

F (pi).

C. Neutrino-Antineutrino Scattering

Using crossing symmetry, the matrix element for ⌫e(1)⌫̄e(2) ! ⌫e(3)⌫̄e(4) can be deter-

mined from the matrix element for ⌫e(1)⌫e(2) ! ⌫e(3)⌫e(4) with the substitution 2 $ 4.

The matrix element is

h|M|2i = (P
1

· P
4

)(P
3

· P
2

).

Similarly to above, it can be shown that
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so that the matrix element is

h|M|2i = (P
1

· P
4

)2.
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Code testing/preliminary results 
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⌫i + e± ! ⌫i + e± i = e, µ, ⌧

¨  since the ν& anti-νare 
cooler than the e± 
anticipate upscattering 
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fFD
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T⌫ =2.892E+01 MeV

¨  Evolve assuming equilibrium from 
30 MeV à 3 MeV 

¨  Then turn-on only elastic ν-lepton 
scattering 



Code testing/preliminary results 
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⌫i + e± ! ⌫i + e± i = e, µ, ⌧

¨  since the ν& anti-νare 
cooler than the e± 
anticipate upscattering 
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T⌫ =1.134E-01 MeV

¨  Evolve assuming equilibrium from 
30 MeV à 3 MeV 

¨  Then turn-on only elastic ν-lepton 
scattering 
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⌫i + e± ! ⌫i + e± i = e, µ, ⌧

¨  since the ν& anti-νare 
cooler than the e± 
anticipate upscattering 
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¨  Evolve assuming equilibrium from 
30 MeV à 3 MeV 

¨  Then turn-on only elastic ν-lepton 
scattering 



Code testing/preliminary results 

¨  Evolve assuming equilibrium from 
30 MeV à 3 MeV 

¨  Then turn-on only elastic ν-lepton 
scattering 
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⌫i + e± ! ⌫i + e± i = e, µ, ⌧

¨  since the ν& anti-νare 
cooler than the e± 
anticipate upscattering 

¨  INTERESTING: because 
“ν decoup. complete by 
e+e- annihilation” 
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Neff 

Initial transport 
temperature [keV] 

Neff 

20 3.0055 

40 3.0055 

100 3.005666 

200 3.005936 

400 3.006555 

1000 3.008414 

3000 3.013428 
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Initial transport 
temperature [keV] 

Neff 

20 3.005584 

40 3.005590 

100 3.005682 

200 3.005985 

400 3.006604 

1000 3.008309 

3000 3.xxxxxx 

Elastic scattering e± annihilation 

These preliminary/test results give a nice demonstration that the 
fundamentals of the neutrino energy transport are working. 


