Nuclear reactions in the early

universe II

Mark Paris - Los Alamos Nat'l Lab
Theoretical Division
ISSAC 2014 UCSD

Organization

Nuclear reactions in the early universe

\square Lectures (Paris/E. Grohs)

- Overview of cosmology/Kinetic theory/Big bang nucleosynthesis (BBN)
II. Scattering \& reaction formalism/Neutrino energy transport
\square Workshop sessions (E. Grohs/Paris)

1. BBN exercises: compute Nuclear Statistical Equilibrium/electron fraction
II. Compute primordial abundances vs $\Omega_{b} h^{2}$: code parallelization
\square Lecture notes
\square Will be available online (URL TBA)

Outline

Lecture I
\square Overview
\square Cosmological dynamics in GR
\square Big bang nucleosynthesis (BBN)
\square Boltzmann equation

- Flat \& curved spacetime

Lecture II

\square Unitary reaction network (URN) of light nuclei
\square Neutrino energy transport
\square Evan Grohs: observations of primordial abundances

Light nuclear reaction program @ LANL

Motivation

\square Data sets: $\sigma, \sigma(\theta), A_{i}(\theta), C_{i, j}, K_{i}^{\prime}, \Sigma(\gamma), \ldots \rightarrow$ T matrix \rightarrow resonance spectrum
\square Unitary parametrization of compound nuclear system

- Applications: astrophysical, nuclear security, inertial confinement fusion, criticality safety, charge-particle transport, nuclear data (ENDF, ENSDF)
\square Ab initio
- Variational MC; Green's function MC
- GFMC [PRL 99, 022502 (2007)]
- n - ${ }^{4} \mathrm{He}$ phase shifts
- comparison GFMC/R-matrix
\square challenge: multichannel
- eg. $\mathrm{n} \alpha \rightarrow \mathrm{n} \alpha, \mathrm{n} \alpha \rightarrow \mathrm{dt} \& \mathrm{dt} \rightarrow \mathrm{dt}$
\square Phenomenology
$\square \mathrm{R}$ matrix ($2 \rightarrow 2$ body scatt/reacs)
- 3-body channels being incorporated

EDA Analyses of Light Systems

A	System	Channels	Energy Range (MeV)
2	$\mathrm{N}-\mathrm{N}$	$\begin{aligned} & p+p ; n+p, \\ & \gamma+d \end{aligned}$	$\begin{aligned} & 0-30 \\ & 0-40 \end{aligned}$
3	N -d	$p+d ; n+d$	0-4
	$\begin{aligned} & { }^{4} \mathrm{H} \\ & { }^{4} \mathrm{Li} \end{aligned}$	$\begin{aligned} & n+t \\ & p+{ }^{3} \mathrm{He} \end{aligned}$	0-20
4	${ }^{4} \mathrm{He}$	$\begin{aligned} & p+t \\ & n+{ }^{3} \mathrm{He} \\ & d+d \end{aligned}$	$\begin{aligned} & 0-11 \\ & 0-10 \\ & 0-10 \end{aligned}$
5	${ }^{5} \mathrm{He}$	$\begin{aligned} & n+\alpha \\ & d+t \\ & { }^{5} \mathrm{He}+\gamma \end{aligned}$	$\begin{aligned} & 0-28 \\ & 0-10 \end{aligned}$
	${ }^{5} \mathrm{Li}$	$\begin{aligned} & p+\alpha \\ & d+{ }^{3} \mathrm{He} \end{aligned}$	$\begin{aligned} & 0-24 \\ & 0-1.4 \end{aligned}$

Analyses of Light Systems, Cont.

A	System (Channels)
6	${ }^{6} \mathrm{He}\left({ }^{5} \mathrm{He}+\mathrm{n}, \mathrm{t}+\mathrm{t}\right) ;{ }^{6} \mathrm{Li}\left(\mathrm{d}+{ }^{4} \mathrm{He}, \mathrm{t}+{ }^{3} \mathrm{He}\right) ;{ }^{6} \mathrm{Be}\left({ }^{5} \mathrm{Li}+\mathrm{p},{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He}\right)$
7	${ }^{7} \mathrm{Li}\left({ }^{+}+{ }^{4} \mathrm{He}, \mathrm{n}+{ }^{6} \mathrm{Li}\right) ;{ }^{7} \mathrm{Be}\left(\gamma+{ }^{7} \mathrm{Be},{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}, \mathrm{p}+{ }^{6} \mathrm{Li}\right)$
8	${ }^{8} \mathrm{Be}\left({ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}, \mathrm{p}+{ }^{7} \mathrm{Li}, \mathrm{n}+{ }^{7} \mathrm{Be}, \mathrm{p}+{ }^{7} \mathrm{Li}{ }^{*}, \mathrm{n}+{ }^{7} \mathrm{Be}{ }^{*}, \mathrm{~d}+{ }^{6} \mathrm{Li}\right)$
9	${ }^{9} \mathrm{Be}\left({ }^{8} \mathrm{Be}+\mathrm{n}, \mathrm{d}+{ }^{7} \mathrm{Li}, \mathrm{t}^{+6} \mathrm{Li}\right) ;{ }^{9} \mathrm{~B}\left(\gamma+{ }^{9} \mathrm{~B},{ }^{8} \mathrm{Be}+\mathrm{p}, \mathrm{d}+{ }^{7} \mathrm{Be},{ }^{3} \mathrm{He}+{ }^{6} \mathrm{Li}\right)$
10	${ }^{10} \mathrm{Be}\left(\mathrm{n}+{ }^{9} \mathrm{Be},{ }^{6} \mathrm{He}+\alpha,{ }^{8} \mathrm{Be}+\mathrm{nn}, \mathrm{t}^{+}{ }^{7} \mathrm{Li}\right) ;{ }^{10} \mathrm{~B}\left(\alpha+{ }^{6} \mathrm{Li}, \mathrm{p}+{ }^{9} \mathrm{Be},{ }^{3} \mathrm{He}+{ }^{7} \mathrm{Li}\right)$
11	${ }^{11} \mathrm{~B}\left(\alpha+{ }^{7} \mathrm{Li}, \alpha+{ }^{4} \mathrm{Li},{ }^{8} \mathrm{Be}+\mathrm{t}, \mathrm{n}+{ }^{10} \mathrm{~B}\right) ;{ }^{11} \mathrm{C}\left(\alpha+{ }^{7} \mathrm{Be}, \mathrm{p}+{ }^{10} \mathrm{~B}\right)$
12	${ }^{12} \mathrm{C}\left({ }^{8} \mathrm{Be}+\alpha, \mathrm{p}+{ }^{11} \mathrm{~B}\right)$
13	${ }^{13} \mathrm{C}\left(\mathrm{n}+{ }^{12} \mathrm{C}, \mathrm{n}+{ }^{12} \mathrm{C}^{*}\right)$
14	${ }^{14} \mathrm{C}\left(\mathrm{n}+{ }^{13} \mathrm{C}\right)$
15	${ }^{15} \mathrm{~N}\left(\mathrm{p}+{ }^{14} \mathrm{C}, \mathrm{n}+{ }^{14} \mathrm{~N}, \alpha+{ }^{11} \mathrm{~B}\right)$
16	${ }^{16} \mathrm{O}\left(\gamma+{ }^{16} \mathrm{O}, \alpha+{ }^{12} \mathrm{C}\right)$
17	${ }^{17} \mathrm{O}\left(\mathrm{n}+{ }^{16} \mathrm{O}, \alpha+{ }^{13} \mathrm{C}\right)$
18	${ }^{18} \mathrm{Ne}\left(\mathrm{p}+{ }^{17} \mathrm{~F}, \mathrm{p}+{ }^{17} \mathrm{~F}, \alpha+{ }^{14} \mathrm{O}\right)$

${ }^{13,14} \mathrm{C}$ system analyses: $\sigma_{\mathrm{T}}(\mathrm{b})$ vs. $\mathrm{E}_{\mathrm{n}}(\mathrm{MeV})$
$\mathrm{n}+{ }^{12} \mathrm{C}$ Total Cross Section

Analyses by GMH/MWP
${ }^{12} C(n, n ')$ Cross Section

Two-channel analysis
n+ ${ }^{13}$ C Total Cross Section

Single-channel analysis

Unitary, self-consistent primordial nucleosynthesis

\square State of standard big-bang nucleosynthesis (BBN)
\square d \& ${ }^{4} \mathrm{He}$ abundances: signature success cosmology+nucl astro+astroparticle

- but there's at least one Lithium ($\left.{ }^{7} \mathrm{Li}\right)$ Problem [${ }^{6} \mathrm{Li}$ too? See: Lind et.al. 2013]
\square coming precision observations of $d,{ }^{4} \mathrm{He}, \eta, N_{\text {eff }}$ demand new BBN capabilities
- resolution of ${ }^{7}$ Li problem:
- observational/stellar astrophysics?

■ ${ }^{7} \mathrm{Li}$ controversial anomaly: nuclear physics solution?

- new physics?
\square Advance BBN as a tool for precision cosmology
- incorporate unitarity into strong \& electroweak interactions (next slide)
- couple unitary reaction network (URN) to full Boltzmann transport code
- neutrino energy distribution function evolution/transport code
- fully coupled to nuclear reaction network
- calculate light primordial element abundance for non-standard BBN
- active-sterile ν mixing
- massive particle out-of-equilibrium decays \rightarrow energetic active SM particles
- Produce tools/codes for nuc-astro-particle community: test new physics w/BBN
- existing codes are based on Wagoner's (1969) code

Nuclear reaction network

\square Single-process (non-unitary) analysis

- $\sigma_{\alpha \beta}(\mathrm{E}) \pm \delta \sigma_{\alpha \beta}(\mathrm{E})$ from expt
- fit form (non-res+narrow res) to $\sigma_{\alpha \beta}(\mathrm{E})$
- compute $\langle\sigma v\rangle(T) \rightarrow$ reactivity \rightarrow network
- NB: norm. systematics can be large
- ${ }^{17} \mathrm{O}$ case (below)
\square Multi-channel (unitary) analysis
- Construct unitary parametrization
- R-matrix (Wigner-Eisenbud '47)
- simultaneous fit of unpolarized/pol'd scatt/reac data \rightarrow determine T (or S)matrix
- determines a unitary reaction network (URN) for analyzed compound systems

Wagoner ApJSuppl ‘69

Boltzmann eq., cross sections, thermal averages

\square Boltzmann equation
\square Toy model, single reaction $\rightarrow \frac{1}{a^{3}} \frac{d\left(n_{1} a^{3}\right)}{d t}=-\langle\sigma v\rangle\left\{n_{1} n_{2}-n_{3} n_{4} \frac{n_{1}^{(0)} n_{2}^{(0)}}{n_{3}^{(0)} n_{4}^{(0)}}\right\}$

- Full code has 144 reactions
- Thermal (Maxwellian) averaged flux(v)*cross section

$$
\langle\sigma v\rangle=\left(\frac{8}{\pi \mu}\right)^{1 / 2}\left(\frac{1}{k T}\right)^{3 / 2} \int_{0}^{\infty} d E E \sigma_{12 \rightarrow 34}(E) e^{-E / k T}
$$

\square Energy dependent, angle-integrated cross section is determined from data; Ranking worst \rightarrow best:
\square Guess: sometimes necessary when no data/calc. (e.g. TALYS)

- Parametrize resonance data: undesirable since res/non-res related by unitarity; results in model dependent reaction cross section
- Fit to experimental cross section: can be OK; normalization often problematic; subject to sometimes large systematic uncertainty
- Unitary theory: multichannel R-matrix: sure-fire; downside: need multichannel data

Observables from transition (T) matrix

\square Scattering matrix: QM amplitude for (i)nitial \rightarrow (f)inal

$$
\langle\mathrm{f}| S(E)|\mathrm{i}\rangle=\delta_{f i}+2 i T_{f i}(E)
$$

\square All observables $\sim T$ matrix bilinears

- unpolarized differential cross section

$$
\frac{d \sigma_{f i}}{d \Omega}=\frac{4 \pi}{k^{2}} \frac{1}{N_{s p i n s, i}} \sum_{s p i n s, f}\left|T_{f i}\right|^{2}
$$

- polarization asymmetry

$$
P=\frac{\sigma_{\uparrow \uparrow}-\sigma_{\downarrow \uparrow}}{\sigma_{\uparrow \uparrow}+\sigma_{\downarrow \uparrow}}
$$

\square Diff cross section \rightarrow int'd cross section \rightarrow thermal averaged

$$
\sigma(E)=\int d \Omega \frac{d \sigma}{d \Omega} \rightarrow\langle\sigma v\rangle
$$

Unitarity: consequences on T matrix

$$
\left.\begin{array}{cc}
\delta_{f i} & =\sum_{n} S_{f n}^{\dagger} S_{n i} \\
S_{f i} & =\delta_{f i}+2 i \rho_{f} T_{f i} \\
\rho_{n} & =\delta\left(H_{0}-E_{n}\right)
\end{array}\right\} \quad T_{f i}-T_{f i}^{\dagger}=2 i \sum_{n} T_{f n}^{\dagger} \rho_{n} T_{n i}
$$

NB: unitarity implies optical theorem $\sigma_{\text {tot }}=\frac{4 \pi}{k} \operatorname{Im} f(0)$; but not only the O.T.

- Implications of unitarity constraint on transition matrix

1. Doesn't uniquely determine T_{ij}; highly restrictive, however

Elastic: $\operatorname{Im} T_{11}^{-1}=-\rho_{1}$ (assuming $\mathrm{T} \& \mathrm{P}$ invariance)
Multichannel: $\operatorname{Im} \mathbf{T}^{-1}=-\rho$
2. Unitarity violating transformations

- cannot scale any set:
- cannot rotate any set: $\quad T_{i j} \rightarrow e^{i \theta_{i j}} T_{i j} \quad \theta_{i j} \in \mathbb{R}$
\star consequence of linear 'LHS' \propto quadratic 'RHS'

Most important feature: linear ~ quadratic
3. Unitary parametrizations constrain the experimental data itself

* normalization, in particular
\star case studies: ${ }^{17} \mathrm{O} \&{ }^{9} \mathrm{~B}$ compound system

Basics of R-matrix (data \Rightarrow amplitudes)

\square Assumptions (cf. Lane \& Thomas RMP ‘58)
a) Non-relativistic QM (L\&T58); LANL-EDA uses rel.
b) Two-body channels only ('c'); aux. spectra code
c) Conservation of N, \mathbf{Z}
d) Finite radius a_{c} beyond $V_{\text {pol }} \approx 0$; sharp boundaries
\square Separated pairs, "channels"
\square A nucleons $\rightarrow\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$
$\square c=\left\{\alpha s_{1} m_{1} s_{2} m_{2}\right\} \rightarrow\left\{\alpha\left(s_{1} s_{2}\right) s m_{s} l m_{\ell}\right\} \rightarrow\left\{\alpha\left(s_{1} s_{2}\right) s \ell, J M\right\}$
\square Assume $a_{c}=a_{\alpha} \rightarrow$ many c have same channel in
 configuration space
Channel surface

- Consider configuration space of 3A dimensions
- Set of points: $\cup_{c} r_{\alpha(c)}=a_{\alpha(c)}$
- Surfaces coincide but assumed to have negl. prob.
- Channels are cylinders normal to channel surf.
$\mathrm{Li}^{7}+p \rightarrow \mathrm{Be}^{8 *} \rightarrow\left\{\begin{array}{l}\mathrm{Li}^{7}+p \text { (elastic scattering) } \\ \mathrm{Li}^{7 *}+p^{\prime} \text { (inelastic scattering) } \\ \mathrm{Be}^{7}+n \\ \mathrm{Li}^{6}+d \\ \mathrm{He}^{4}+\mathrm{He}^{4} \\ \mathrm{Be}^{8}+\text { photon, etc. (capture) }\end{array}\right.$

R-matrix formalism

$\left.\mathcal{L}_{B}=\sum_{c} \mid c\right)\left(c \left\lvert\,\left(\frac{\partial}{\partial r_{c}} r_{c}-B_{c}\right)\right.\right.$,
$\left(\mathbf{r}_{c} \mid c\right)=\frac{\hbar}{\sqrt{2 \mu_{c} a_{c}}} \frac{\delta\left(r_{c}-a_{c}\right)}{r_{c}}\left[\left(\phi_{s_{1}}^{\mu_{1}} \otimes \phi_{s_{2}}^{\mu_{2}}\right)_{s}^{\mu} \otimes Y_{l}^{m}\left(\hat{\mathbf{r}}_{c}\right)\right]_{J}^{M}$
$R_{c^{\prime} c}=\left(c^{\prime}\left|\left(H+\mathcal{L}_{B}-E\right)^{-1}\right| c\right)=\sum_{\lambda} \frac{\left(c^{\prime} \mid \lambda\right)(\lambda \mid c)}{E_{\lambda}-E}$

Bloch operator $\left.\mathcal{L}_{B}=\sum_{c} \mid c\right)\left(c \left\lvert\,\left[\frac{\partial}{\partial r_{c}} r_{c}-B_{c}\right]\right.\right.$ ensures
Hermiticity of Hamiltonian restricted to internal region
\square R-matrix theory: unitary, multichannel parametrization of (not just resonance) data
\square Interior/Exterior regions

- Interior: strong interactions
- Exterior: Coulomb/nonpolarizing interactions
- Channel surface
$\mathcal{S}_{c}: r_{c}=a_{c} \quad \mathcal{S}=\sum_{c} \mathcal{S}_{c}$
\square R-matrix elements
- Projections on channel surface functions ($\mathbf{r}_{c} \mid c$) of Green's function

$$
G_{B}=\left[H+\mathcal{L}_{B}-E\right]^{-1}
$$

- Boundary conditions

$$
B_{c}=\left.\frac{1}{u_{c}\left(a_{c}\right)} \frac{d u_{c}}{d r_{c}}\right|_{r_{c}=a_{c}}
$$

R-matrix implementation in EDA

EDA = Energy Dependent Analysis
\square Adjust $E_{\lambda} \& \gamma_{c \lambda}$
\square Any number of two-body channels
\square Arbitrary spins, masses, charges (zero mass)
\square Scattering observables
\square Wolfenstein trace formalism
Data
\square Normalization
\square Energy shifts
\square Energy resolution/spread
\square Fit (rank-1 var. metric) solution

$$
\chi_{E D A}^{2}=\sum_{i}\left[\frac{n X_{i}(\mathbf{p})-R_{i}}{\delta R_{i}}\right]^{2}+\left[\frac{n S-1}{\delta S / S}\right]^{2}
$$

\square Covariance determined

${ }^{17} \mathrm{O}$ analysis configuration

	Channel	$a_{c}(\mathrm{fm})$	$I_{\text {max }}$
	$\mathrm{n}+{ }^{16} \mathrm{O}$	4.3	4
	$\alpha+{ }^{13} \mathrm{C}$	5.4	5
Reaction	Energies (MeV)	\# data points	s Data types
${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{n})^{16} \mathrm{O}$	$E_{n}=0-7$	2718	$\sigma_{\mathrm{T}}, \sigma(\theta), \mathrm{P}_{\mathrm{n}}(\theta)$
${ }^{16} \mathrm{O}(\mathrm{n}, \alpha)^{13} \mathrm{C}$	$E_{n}=2.35-5$	5850	$\sigma_{\text {int }}, \sigma(\theta), A_{n}(\theta)$
${ }^{13} \mathrm{C}(\alpha, n)^{16} \mathrm{O}$	$\mathrm{E}_{\alpha}=0-5.4$	874	$4 \mathrm{O}_{\text {int }}$
${ }^{13} \mathrm{C}(\alpha, \alpha)^{13} \mathrm{C}$	$\mathrm{E}_{\alpha}=2-5.7$	1296	6 - $\sigma(\theta)$
total		5738	8

${ }^{17}$ O compound system: experimental status

Recent (Harissopulos '05) measurement ${ }^{13} \mathrm{C}(\alpha, n){ }^{16} \mathrm{O}$ vs. older (Bair \& Haas '73)

Heil et.al. PRC 78025803 ('08)

Harissopulos(05) data $2 / 3 * \mathrm{~B} \& \mathrm{H}(73)$
Heil(08) data consistent with B\&H

Tempting to conclude that B\&H73 was right all along!

${ }^{17} \mathrm{O}$ compound system: experimental status

Tempting to conclude that B\&H73 was right all along!

R-matrix analyses support B\&H73/Heil08

\square LANL R-matrix fit to Bair\&Haas73
a two-channel fit: $\left({ }^{16} \mathrm{O}, \mathrm{n}\right) \&\left({ }^{13} \mathrm{C}, \alpha\right)$
$\square \ell_{n}=0, \ldots, 4 ; \quad \ell_{\alpha}=0, \ldots, 5$
\square data included: $\sigma_{T}(E)$
${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{n}),{ }^{16} \mathrm{O}(\mathrm{n}, \alpha),{ }^{13} \mathrm{C}(\alpha, \mathrm{n})$

- $\sigma_{e l}, d \sigma / d \Omega, A_{y}$
- χ^{2} min: normalizations float
- Test Hariss05 data
- remove B\&H73/HeilO8 data

- fix Hariss05 norm to unity
- unable to obtain fit $\chi^{2}(<2.0)$
- now allow HarissO5 norm to float
- requires scale factor of ~ 1.5, consistent with B\&H73
\square Kunieda/Kawano analysis [2013]
- cf. LANL R-matrix(EDA)/ENDF/B-VI. 8
\square with independent R-matrix code
\square Right to conclude B\&H73 data correct on the basis of unitarity!

Toward a unitary reaction network for BBN

\square Primordial nucleosynthesis

- Can unitarity play a role in precision BBN?
$\square \mathrm{D},{ }^{4} \mathrm{He}$ abund. agree with theo/expl uncertainties
\square At $\eta_{\text {wmap }}(C M B)^{7} \mathrm{Li} /\left.\mathrm{H}\right|_{\text {BBN }} \sim(2.2-4.2)^{* 7} \mathrm{Li} /\left.\mathrm{H}\right|_{\text {halo* }}$
\square Discrepancy ~4.5-5.5 $\sigma \rightarrow$ the "Li problem"
\square Resonant destruction ${ }^{7} \mathrm{Li}$
- Prod. mass 7 "well understood"; destruction not
- Cyburt \& Pospelov arXiv:0906.4373; IJMPE, 27 (2012)

$\square{ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{p}) \alpha \alpha \&{ }^{7} \mathrm{Be}(\mathrm{d}, \gamma)^{9} \mathrm{~B}$ resonant enhancement
Baryon-to-photon ratio $\eta \times 10^{10}$
\square Identify ${ }^{9} \mathrm{~B}_{5 / 2+} \simeq 16.7 \mathrm{MeV} \simeq \mathrm{E}_{\text {thr }}\left(\mathrm{d}+{ }^{7} \mathrm{Be}\right)+200 \mathrm{keV}$
- Near threshold
- $\left(E_{r}, \Gamma_{d}\right) \simeq(170-220,10-40) \mathrm{keV}$ solve Li problem
- 'Large' widths

NB: both approaches assume validity of TUNLNDG tables

- Conclude "large channel radius" required

${ }^{9} \mathrm{~B}$ analysis: included data

$\square{ }^{6} \mathrm{Li}+{ }^{3} \mathrm{He}$ elastic Buzhinski et.al., Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.43, p. 158 (1979)

- Differential cross section
- $1.30 \mathrm{MeV}<\mathrm{E}\left({ }^{3} \mathrm{He}\right)<1.97 \mathrm{MeV}$
${ }^{6} \mathrm{Li}+{ }^{3} \mathrm{He} \rightarrow \mathrm{p}+{ }^{8} \mathrm{Be}^{*}$ Elwyn et.al., Phys. Rev, C 22, 1406 (1980)
\square Integrated cross section
- Quasi-two-body, excited-state, summed final channel

Data accessed via EXFOR/CSISRS database (C4 format)
$\square{ }^{6} \mathrm{Li}+{ }^{3} \mathrm{He} \rightarrow \mathrm{d}+{ }^{7} \mathrm{Be}$
D.W. Barr \& J.S. Gilmore, unpublished (1965)

- Integrated cross section
- $0.42 \mathrm{MeV}<\mathrm{E}\left({ }^{3} \mathrm{He}\right)<4.94 \mathrm{MeV}$
$\square{ }^{6} \mathrm{Li}+{ }^{3} \mathrm{He} \rightarrow \gamma+{ }^{9} \mathrm{~B}$
Aleksic \& Popic, Fizika 10, 273-278 (1978)
- Integrated cross section
- $0.7 \mathrm{MeV}<\mathrm{E}\left({ }^{3} \mathrm{He}\right)<0.825 \mathrm{MeV}$
- New to ${ }^{9} \mathrm{~B}$ analysis
- Separate ${ }^{8} \mathrm{Be}^{*}$ states

■ 2+@,200 keV [16.9 MeV], $1+@ 650 \mathrm{keV}[17.6 \mathrm{MeV}], 1+@ 1.1 \mathrm{MeV}[18.2 \mathrm{MeV}]$

- Simultaneous analysis with ${ }^{9}$ Be mirror system

R-matrix configuration in EDA code

Hadronic channels (in blue, not included)

$A_{1} A_{2}{ }^{\pi}$	${ }^{3} \mathrm{He}^{6} \mathrm{Li}^{+}(1)$	$p^{8} \mathrm{Be}^{*+}(2)$	$d^{7} \mathrm{Be}^{-}(3)$
	$\frac{3}{2} \quad \frac{1}{2}$	$\frac{5}{2} \quad \frac{3}{2}$	$\begin{array}{lll}\frac{5}{2} & \frac{3}{2} & \frac{1}{2}\end{array}$
$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{\|rr\|} \hline{ }^{4} S_{3 / 2} & { }^{2} S_{1 / 2} \\ { }^{4} P_{5 / 2,3 / 2,1 / 2} & { }^{2} P_{3 / 2,1 / 2} \\ { }^{4} D_{7 / 2,5 / 2,3 / 2,1 / 2} & { }^{2} D_{5 / 2,3 / 2} \end{array}$	${ }^{6} S_{5 / 2}$ ${ }^{4} S_{3 / 2}$ ${ }^{6} P_{7 / 2,5 / 2,3 / 2}$ ${ }^{4} P_{5 / 2,3 / 2,1 / 2}$ ${ }^{6} D_{9 / 2,7 / 2,5 / 2,3 / 2,1 / 2}$ ${ }^{4} D_{7 / 2,5 / 2,3 / 2,1 / 2}$	${ }^{6} S_{5 / 2}$ ${ }^{4} S_{3 / 2}$ ${ }^{2} S_{1 / 2}$ ${ }^{6} P_{7 / 2,5 / 2,3 / 2}$ ${ }^{4} P_{5 / 2,3 / 2,1 / 2}$ ${ }^{2} P_{3 / 2,1 / 2}$ ${ }^{6} D_{9 / 2,7 / 2,5 / 2,3 / 2,1 / 2}$ ${ }^{4} D_{7 / 2,5 / 2,3 / 2,1 / 2}$ ${ }^{2} D_{5 / 2,3 / 2}$
$\mathrm{E}_{\mathrm{thr}}$ (C	M, MeV) 16.6	16.7	16.5

Electromagnetic channel: $\quad \gamma+{ }^{9} B \rightarrow E_{1}^{3 / 2}, M_{1}^{5 / 2}, M_{1}^{3 / 2}, M_{1}^{1 / 2}, E_{1}^{5 / 2}, E_{1}^{1 / 2}$

Full model space:
state number;
channel pair;
LS; J; channel
radius [fm]

1	1	4 s	$3 / 2$	7.50000000 f
2	1	4 d	$3 / 2$	7.50000000 f
3	1	2 d	$3 / 2$	7.50000000 f
4	2	4 s	$3 / 2$	5.50000000 f
5	3	6 p	$3 / 2$	7.00000000 f
6	3	4 p	$3 / 2$	7.00000000 f
7	3	2 p	$3 / 2$	7.00000000 f
8	4	E 1	$3 / 2$	50.00000000 f
9	1	4 p	$5 / 2$	7.50000000 f
10	2	6 p	$5 / 2$	5.50000000 f
11	2	4 p	$5 / 2$	5.50000000 f
12	3	6 s	$5 / 2$	7.00000000 f
13	4	M 1	$5 / 2$	50.00000000 f
14	1	4 p	$3 / 2$	7.50000000 f
15	1	2 p	$3 / 2$	7.50000000 f
16	2	6 p	$3 / 2$	5.50000000 f
17	2	4 p	$3 / 2$	5.50000000 f
18	3	4 s	$3 / 2$	7.00000000 f
19	4	M 1	$3 / 2$	50.00000000 f

Observable fit: ${ }^{3} \mathrm{He}+{ }^{6}$ Li elastic DCS

${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}\right.$,Elastic)
$\chi^{2} / N_{\text {data }}=1.91$
Differential cross section

Observable fit: ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{8} \mathrm{Be}{ }^{*}$ integrated $\mathrm{x}-\mathrm{sec}$

${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{8} \mathrm{Be}^{*}$
$\chi^{2} / N_{\text {data }}=0.55$
Integrated cross section

Observable fit: ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{7} \mathrm{Be}$ integrated x -sec

Observable fit: ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \gamma\right)^{9} \mathrm{~B}$ integrated x -sec

${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{Y}\right){ }^{9} \mathrm{~B}$
$\chi^{2} / N_{\text {data }}=0.37$
Integrated cross section

${ }^{9} \mathrm{~B}$ analysis result: resonance structure

Ex(MeV)	Jpi	Gamma(keV)	Er(MeV)	ImEr(MeV)	E(3He)	Strength 16.46539
17.11317	$1 / 2-$	768.46	-.1369	-0.3842	-0.2054	0.06 weak
17.20115	$5 / 2-$	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086	$3 / 2-$	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538	$5 / 2+$	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619	$7 / 2+$	2036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773	$3 / 2-$	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821	$3 / 2+$	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292	$1 / 2+$	5446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716	$1 / 2-$	10278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923	$3 / 2-$	1478.22	3.0069	-0.7391	4.5104	0.52 weak

TUNL-NDG/ENSDF parameters

NB: no strong resonance seen $\sim 100 \mathrm{keV}$ of ${ }^{3} \mathrm{He}+{ }^{6} \mathrm{Li}$ threshold

$E_{\mathrm{x}}{ }^{\mathrm{a}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay
16.024 ± 25	$T=\left(\frac{1}{2}\right)$	180 ± 16	
$16.71 \pm 100^{\mathrm{h}}$	$\left(\frac{5}{2}^{+}\right) ;\left(\frac{1}{2}\right)$		
17.076 ± 4	$\frac{1}{2}^{-} ; \frac{3}{2}$	22 ± 5	$\left(\gamma,{ }^{3} \mathrm{He}\right)$
17.190 ± 25		120 ± 40	$\mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}$
$17.54 \pm 100^{\mathrm{h}, \mathrm{i}}$	$\left(\frac{7}{2}^{+}\right) ;\left(\frac{1}{2}\right)$		
$17.637 \pm 10^{\mathrm{i}}$		71 ± 8	$\mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}, \alpha$

Summary

\square Provided overview of current work in the LANL light nuclear reaction program
\square Emphasize the utility of multichannel, unitary parametrization of light nuc data
$\square{ }^{17} \mathrm{O}$ norm issue: are Bair \& Haas ' 73 data conclusive?${ }^{9} B$ resonance spectrum:
\square no resonances in ${ }^{9} \mathrm{~B}$ that reside within $\sim 200(\sim 100) \mathrm{keV}$ of the $\mathrm{d}+{ }^{7} \mathrm{Be}$ (${ }^{3} \mathrm{He}+{ }^{6} \mathrm{Li}$) threshold with 'large' widths $10-40 \mathrm{keV}$
\square Appears to rule out scenarios considered by Cyburt \& Pospelov (2009) that low-lying, robust resonance in ${ }^{9} \mathrm{~B}$ could explain the "Li problem"

End Lecture II

BSMs scenarios

\square New particles: WIMPs, Axion, SUSY, ...
\square GR modifications: new propagating DsOF; scalar-tensor
\square Modifications of Cosmological SM: non-zero ν chem. pot.; nonequil. phenomena
\square Variation of fundamental couplings
\square Cosmic variance
\square Neutrino sector

- solar, atmospheric \& reactor neutrinos oscillation experiment prove at least two neutrinos have mass
\square "sterile neutrinos": mass \rightarrow neutrinos have left- \& right-hand spin states
- only left-hand neutrinos interact in SM
- Massless neutrinos (recall)
- have only one spin state

Neutrino Mass: what we know and don't know

We know the mass-squared differences: $\left\{\begin{array}{l}\delta m_{\odot}^{2} \approx 7.6 \times 10^{-5} \mathrm{eV}^{2} \\ \delta m_{\mathrm{atm}}^{2} \approx 2.4 \times 10^{-3} \mathrm{eV}^{2}\end{array}\right.$

$$
e . g ., \quad \delta m_{21}^{2} \equiv m_{2}^{2}-m_{1}^{2}
$$

We do not know the absolute masses or the mass hierarchy: normal mass hierarchy inverted mass hierarchy

Neutrino mass mixing 101

\square Take-away message from experiments: "neutrinos have mass"

- neutrino flavor eigenstates
- interact via left-hand (L) components
$\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$
- Mass term, however, mixes L \& R:
$\bar{\psi}_{e} \gamma_{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) \psi_{\nu_{e}}=\bar{\psi}_{e, L} \gamma_{\mu} \psi_{e, L}$
$\bar{\psi}_{e} \psi_{e}=\bar{\psi}_{e, R} \psi_{e, L}+\bar{\psi}_{e, L} \psi_{e, R}$

$$
\left(\begin{array}{l}
\left|\nu_{e}\right\rangle \\
\left|\nu_{\mu}\right\rangle \\
\left|\nu_{\tau}\right\rangle
\end{array}\right)=U_{m}\left(\begin{array}{l}
\left|\nu_{1}\right\rangle \\
\left|\nu_{2}\right\rangle \\
\left|\nu_{3}\right\rangle
\end{array}\right) \quad U_{m}=U_{23} U_{13} U_{12} M
$$

\square Mass mixing matrix

$$
\begin{aligned}
U_{23} & \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right) \\
U_{13} & \equiv\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & e^{i \delta} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{-i \delta} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right)
\end{aligned}
$$

$$
\theta_{12}, \theta_{23}, \theta_{13}, \delta
$$

$$
U_{12} \equiv\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{gathered}
\theta_{12} \approx 0.59_{-0.015}^{+0.02} \\
\theta_{23} \approx 0.785_{-0.124}^{0+1.24} \approx \frac{\pi}{4} \\
\theta_{13} \approx 0.154_{-0.065}^{+0.065}
\end{gathered}
$$

Sterile* neutrinos

\square What are they?

- Related to right-handed components
\square Wherefore?

Neutrino
(left-handed)

Antineutrino (right-handed)
\square Mass \rightarrow right-handed neutrinos \rightarrow must exist by Lorentz invariance

- but may have mass modified by interactions
- Non-interacting(?!): only example of particles that interact solely via GR
- Interactions \rightarrow necessarily beyond SM physics
\square What (if anything) do they do?
\square perhaps they mix with active (e, μ, τ) neutrinos?

$$
\begin{aligned}
\left|\nu_{e}\right\rangle & \cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{2}\right\rangle \\
\left|\nu_{s}\right\rangle & \rangle=-\sin \theta\left|\nu_{1}\right\rangle+\cos \theta\left|\nu_{2}\right\rangle
\end{aligned}
$$

- then they're not really "sterile"
\square Why would we want (need?) them?
- leptogenesis; baryogenesis
- BBN \& $N_{\text {eff }}$

Hints for light sterile neutrinos?

\square mini-BooNE
\square neutrino oscillation experiment $\quad \nu_{e} \rightarrow \nu_{s} \rightarrow \nu_{\mu}$

- appearance with $\delta m^{2} \sim 1 \mathrm{eV}^{2}$
- result inconsistent with flavor oscillation alone
\square Noutrino reactor anomaly
$\square 3 \sigma$ deficit neutrinos chacted in short-baseline ($<100 \mathrm{~m}$) reactor ν experiments
$\bar{\nu}_{e}$ deficit from $\bar{\nu}_{e} \rightarrow \bar{\nu}_{s}(? ? ?)$ - a disappearance experimment
- A. Hayes et al. (2013) find "large corrections"
\square Extra radiation at photon-decoupling (Neff) ??
- CMB observations (PolarBear, ACT, SPT, Planck, CMBPol,...)
\square 'extra' RED could reconcile H_{0} and σ_{8} inferred from CMB and astronomical observation

Dark radiation

$\square \gamma$-decoupling (last scattering) $\mathrm{T} \sim 0.2 \mathrm{eV}(\mathrm{z} \sim 1000)$
$\square \mathrm{N}_{\text {eff }}$: "effective number of neutrino degrees of freedom"

- A misnomer; it refers to any/all relativistic particles at decoupling
\square 'Baby' formula: $\rho_{\text {rad }}=2\left[1+\frac{7}{8}\left(\frac{4}{11}\right)^{4 / 3} N_{\text {eff }}\right] \frac{\pi^{2}}{30} T_{\gamma}^{4}$
- We've done this better...

- annihilation of neutrinos-antineutrinos at weak decoupling
- QED corrections
\square Measurements
- WMAP9 (201 2): 3.26(35); Planck (2013): 3.30(50); ACT(2013): 2.79(56); SPT-SZ (201 2): 3.71 (35)
\square Sterile neutrinos can affect the physics of dark radiation

CMB as a probe of steriles: caveats

\square Sterile neutrinos can decay out-of-equilibrium

- "dilution": steriles are "sub-weakly" interacting
\square non-thermal energy spectra/number densities
\square Care must be applied when
\square computing $N_{\text {eff }}$: non-equilibrium effects; relativistic vs. non-relativistic kinematics
\square determining $N_{\text {eff }}$ and Y_{p} (mass fraction ${ }^{4} \mathrm{He}$)
- current Planck collab. procedure is inconsistent w.r.t. $N_{\text {eff }}$ and Y_{p}
- in preparation: "Neutrino physics in the era of precision cosmology"
\square neutron/proton ratio (and therefore ${ }^{4} \mathrm{He}$)
\square competing weak reaction rates determine $Y_{p}\left({ }^{4} \mathrm{He}\right)$
\square very sensitive to neutrino energy spectra

Dilution physics (I)

\square Consider the presence of ν_{s}

- heavy ($\sim 100 \mathrm{MeV}$), unstable ($\sim 10 \mathrm{~s}$)
\square Thermal effects
- Assume interaction of steriles sufficiently strong at T~few GeV to maintain thermal equilibrium with e, ν, γ, \ldots
- Further, the sterile decouples at $\mathrm{T} \sim \mathrm{few} \mathrm{MeV}$

$$
s=\frac{\rho+p}{T}=g_{*}(a) \frac{2 \pi^{2}}{45} T^{3}
$$

- assume relativistic kinematics throughout
- proper entropy is conserved: $s a^{3}=$ constant (FLRW)
- sterile neutrino temperature distribution cooled or "diluted"

$$
\frac{T_{\nu_{s}}\left(a_{w d c}\right)}{T_{\gamma}\left(a_{w d c}\right)}=\left(\frac{g_{*}\left(a_{w d c}\right)}{g_{*}\left(a_{\nu_{s} d c}\right)}\right)^{1 / 3}=\left(\frac{10.75}{61.75}\right)^{1 / 3} \approx \frac{1}{1.8}
$$

- number density comparable to photons (since lifetime chosen 10's secs)
- $\mathrm{n}\left(\nu_{\mathrm{s}}\right) \sim 0.1 \mathrm{n}(\gamma)$

NB: ν_{s} is out-of-equilibrium with $e \mu \nu \gamma$

Dilution physics (II)

\square Heavy particle decay during/after weak decoupling

- Interactions

Exothermic	Endothermic	
$\nu_{s} \rightarrow 3 \nu_{i}$	$\nu_{s} \rightarrow \nu_{i}+e^{-}+e^{+}$	$\nu_{s} \rightarrow \nu+\pi^{0}$
$\nu_{s} \rightarrow \nu_{i}+\gamma$	$\nu_{s} \rightarrow \nu+\mu^{+}+\mu^{-}$	$\nu_{s} \rightarrow \pi^{ \pm}+e^{\mp}$
		$\nu_{s} \rightarrow \pi^{ \pm}+\mu^{\mp}$

\square Entropy production
\square due to out-of-equilibrium decay
plasma cools slower than decoupled actives
\square Dilution

- decoupled actives diluted down
- Two effects
- coupling to plasma \rightarrow reduction in $N_{\text {eff }}$
- coupling to actives \rightarrow increase $\mathrm{N}_{\text {eff }}$

Dilution phyiscs (III)

\square Photons thermalize

- sterile neutrino decay ($\mathrm{m}_{\mathrm{s}}<$ few GeV)
\square But active neutrinos may not
\square energy/decay-epoch dependent

$$
\begin{aligned}
\nu_{s} \rightarrow & \pi^{0}+\nu_{e, \mu, \tau} \rightarrow 2 \gamma+\nu_{e, \mu, \tau} \\
\nu_{s} \rightarrow & \pi^{+}+e^{-} \rightarrow 2 \gamma+3 \nu \\
& \vee_{\mu^{+}}+\nu_{\mu} \\
& \searrow^{+}+\bar{\nu}_{\mu}+\nu_{e} \\
\nu_{s} \rightarrow & \pi^{+}+\mu^{-} \rightarrow 2 \gamma+5 \nu
\end{aligned}
$$

\square Heavy sterile neutrino decay
\square dilution of background $(\mathrm{C} \nu \mathrm{B})$
\square generation of radiation energy density: $\mathrm{N}_{\text {eff }}$
\square prodigious entropy production

Non-equilibrium distribution of $\mathrm{C} \nu \mathrm{B}$

- Heavy sterile dilutes the normal background neutrino spectrum
- decay-generated spectrum $\sim 10^{3}$ times more energetic than standard; never nonrelativistic
- can't detect neutrino rest mass cosmologically

The Big Question: what effect on BBN? Y_{p}

Code capabilities \& design

\square Capabilities
\square Boltzmann equation solver: two classes of Boltzmann equations
■ Nucleosynthesis: Unitary Reaction Network for BBN (previous slides)

- Neutrino energy transport: new capability - never before achieved

$$
\begin{gathered}
\frac{D f_{1}}{D t}=\int \frac{s}{2 E_{1}} \frac{d^{3} p_{2}}{(2 \pi)^{3}\left(2 E_{2}\right)} \frac{d^{3} p_{3}}{(2 \pi)^{3}\left(2 E_{3}\right)} \frac{d^{3} p_{4}}{(2 \pi)^{3}\left(2 E_{4}\right)} \\
\left.\times\left.\langle | \mathcal{M}\right|^{2}\right\rangle(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}-P_{3}-P_{4}\right) F\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
\frac{D f_{1}}{D t}=\frac{\kappa}{32(2 \pi)^{3}} \int_{0}^{\infty} p_{1} p_{2}^{3} d p_{2} \int_{-1}^{1} d x \frac{(1-x)^{2}}{\sqrt{p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} x}} \int_{E_{\min }}^{E_{\max }} d p_{3} F\left(p_{1}, p_{2}, p_{3}, p_{1}+p_{2}-p_{3}\right) .
\end{gathered}
$$

- Various reactions result in seven evaluations of this triple integral
- Achieved short turn-around time by parallelization
\square Design
\square Modular code design for adaptability for public code release
\square Allow insertion of "physics packages" to test BSM (not just sterile ν 's)

Code testing/preliminary results

\square Evolve assuming equilibrium from $30 \mathrm{MeV} \rightarrow 3 \mathrm{MeV}$
\square Then turn-on only elastic ν-lepton scattering

$$
\nu_{i}+e^{ \pm} \rightarrow \nu_{i}+e^{ \pm} \quad i=e, \mu, \tau
$$

$T_{\nu}=2.892 \mathrm{E}+01 \mathrm{MeV}$

\square since the ν \& anti- ν are cooler than the $\mathrm{e}^{ \pm}$ anticipate upscattering

Code testing/preliminary results

\square Evolve assuming equilibrium from $30 \mathrm{MeV} \rightarrow 3 \mathrm{MeV}$
\square Then turn-on only elastic ν-lepton scattering

$$
\nu_{i}+e^{ \pm} \rightarrow \nu_{i}+e^{ \pm} \quad i=e, \mu, \tau
$$

$T_{\nu}=1.134 \mathrm{E}-01 \mathrm{MeV}$

\square since the ν \& anti- ν are cooler than the $\mathrm{e}^{ \pm}$ anticipate upscattering

Code testing/preliminary results

\square Evolve assuming equilibrium from $30 \mathrm{MeV} \rightarrow 3 \mathrm{MeV}$
\square Then turn-on only elastic ν-lepton scattering

$$
\nu_{i}+e^{ \pm} \rightarrow \nu_{i}+e^{ \pm} \quad i=e, \mu, \tau
$$

$T_{\nu}=3.875 \mathrm{E}-02 \mathrm{MeV}$

\square since the ν \& anti- ν are cooler than the $\mathrm{e}^{ \pm}$ anticipate upscattering

Code testing/preliminary results

\square Evolve assuming equilibrium from $30 \mathrm{MeV} \rightarrow 3 \mathrm{MeV}$
\square Then turn-on only elastic ν-lepton scattering

$$
\nu_{i}+e^{ \pm} \rightarrow \nu_{i}+e^{ \pm} \quad i=e, \mu, \tau
$$

$T_{\nu}=1.886 \mathrm{E}-03 \mathrm{MeV}$

Elastic scattering

Initial transport temperature [keV]	$N_{\text {eff }}$
20	3.0055
40	3.0055
100	3.005666
200	3.005936
400	3.006555
1000	3.008414
3000	3.013428

e \pm annihilation Inifial transport temperature [keV]	$\mathrm{N}_{\text {eff }}$
20	3.005584
40	3.005590
100	3.005682
200	3.005985
400	3.006604
1000	3.008309
3000	$3 . x x x x x x$

These preliminary/test results give a nice demonstration that the fundamentals of the neutrino energy transport are working.

