Neutrino Interactions and Nucleosynthesis: Lecture 2

Thermonuclear reaction networks

Carla Fröhlich North Carolina State University cfrohli@ncsu.edu

2014 Summer School on AstroComputing

SDSC, San Diego

Lecture plan

- Lecture 1
 - How to make heavy elements
 - Neutrinos set the conditions
 - Neutron-rich nucleosynthesis
 - Proton-rich nucleosynthesis
- Lecture 2
 - Thermonuclear reaction networks
 - Nuclear inputs

Origin of elements

Origin of elements

How are nuclei made? Where? Through what processes?

Nuclear physics

- Need to know the relevant nuclear physics:
 - Properties of nuclei (mass, half-life, spin, levels, etc)
 - Properties of reactions between nuclei (and leptons, photons)

Reaction rates

Consider:

- n_i: number density of particles of type i cm⁻³
- n_i: number density of particles of type j cm⁻³
- σ : cross section (effective area for reaction) cm²

• Reactions per time per volume = relative flux of particles i $cm^{-3} cm s^{-1}$ × number of particles j cm^{-3} × cross section cm^{2} r = n_i v n_i $\sigma(v)$ $cm^{-3} s^{-1}$

Reaction rates

- Previously: particles i move at constant v
- For constant relative velocity between particles i and j

$$\rightarrow$$
 reacts / vol / time: $r_{i;j} = \int \sigma \cdot |\vec{v}_i - \vec{v}_j| dn_i dn_j$

• General: projectiles and targets follow velocity distribution

$$r_{i;j} = n_i n_j \int \sigma(|\vec{v}_i - \vec{v}_j|) |\vec{v}_i - \vec{v}_j| \phi(\vec{v}_i) \phi(\vec{v}_j) d^3 v_i d^3 v_j$$

Integral depends on type of particles and distribution

Maxwell-Boltzmann distribution

- Nuclei in astrophysical plasma are not monoenergetic
- They obey MB distribution

Reaction rates

• Use center-of-mass coordinates, carry out integration, and remember that $\int \phi(\vec{V}) d^3V = 1$

reaction rate becomes $r_{i;j} = n_i n_j \langle \sigma v \rangle_{i;j}$

with the thermonuclear cross section $\langle \sigma v \rangle$

$$\left\langle \sigma v \right\rangle (T) = \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E\sigma(E) \; \exp(-E/kT) dE$$

- Only depends on temperature
- If we know σ (E), we can get $\langle \sigma v \rangle$

Astrophysical S-factor

- Use known energy dependence of $\sigma(E)$
- For charged particles: $\sigma(E)$ is proportional to:
 - Coulomb barrier penetration ~exp(-E^{1/2})
 - Nuclear size ~1/E
- All other energy dependencies are lumped together into astrophysical S-factor S(E)
- Why?
 - For non-resonant reactions: S(E) is slowly varying
 → better to work with S(E) if extrapolations are needed

Astrophysical S-factor

- Cross section $\sigma = E^{-1} \times exp(-E^{\frac{1}{2}}) \times S(E)$
- Reaction rate becomes

$$\begin{split} \langle \sigma v \rangle &= \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E\sigma(E) \ \exp(-E/kT) dE \\ &= \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \ \exp(-bE^{-1/2}) \ \exp(-E/kT) dE. \end{split}$$

10

• S(E) is slowly varying with E, so integral is dominated by the two exponentials

Gamow peak

Most effective stellar energy

Nuclear reaction networks

 Turn number of reactions per volume and time into differential equation, for a reaction i(j, o)m

$$r_{i;j} = \frac{1}{1 + \delta_{ij}} n_i n_j \langle \sigma v \rangle \longrightarrow \begin{cases} \frac{\partial n_i}{\partial t} \\ \frac{\partial n_o}{\partial t} \end{pmatrix}_{\rho} = (\frac{\partial n_m}{\partial t})_{\rho} = -r_{i;j} \\ \frac{\partial n_o}{\partial t} \end{pmatrix}_{\rho} = (\frac{\partial n_m}{\partial t})_{\rho} = +r_{i;j}$$

a... a.

• Total rate of change of number density:

$$\dot{n}_i = (\frac{\partial n_i}{\partial t})_\rho + n_i \frac{\dot{\rho}}{\rho}$$

• Includes changes due to density change (we are not interested in those)

Abundances, mass fractions

- Matter density ρ (g cm⁻³)
- Number density n depends on matter density
- Can we separate dependence on matter density?
- → Define abundance Y = n / ρ N_A
- Units of abundance: mole g⁻¹
- Mass fraction $X_i = A_i Y_i$ with normalized sum

Nuclear reaction networks

- Use abundance $Y_i = \frac{n_i}{\rho N_A}$ $\dot{Y}_i = \frac{\dot{n}_i}{\rho N_A} \frac{n_i}{\rho N_A} \frac{\dot{\rho}}{\rho}$
- Derivative becomes:

$$\dot{Y}_{i} = \frac{1}{\rho N_{A}} \left(\frac{\partial n_{i}}{\partial t}\right)_{\rho} = -\frac{r_{i;j}}{\rho N_{A}} = -\frac{1}{1+\delta_{ij}} \rho N_{A} \left\langle \sigma v \right\rangle_{i;j} Y_{i} Y_{j}$$

- For decays (and reactions with photons and leptons):
 - "decay rate" λ
 - Derivate becomes $\dot{Y}_i = -\lambda_i Y_i$

Inverse reactions

- Many reactions are the inverse of an other reaction
- Forward and inverse reactions are linked by time reversal invariance
- For reaction i(j,o)m the thermonuclear cross section depends on
 - Q-value (energy difference between products and reactants)
 - Partition functions (Energy weighted density of states)

$$\langle \sigma v \rangle_{i;j,o} = \frac{1 + \delta_{ij}}{1 + \delta_{om}} \frac{G_m g_o}{G_i g_j} (\frac{\mu_{om}}{\mu_{ij}})^{3/2} \exp(-Q_{o,j}/kT) \langle \sigma v \rangle_{m;o,j}$$

Nuclear reaction networks

Set of coupled differential equations

 $\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{jk}^{i} \rho N_{A} \langle \sigma v \rangle_{jk} Y_{j} Y_{k} + \sum_{j,k,l} N_{jkl}^{i} \rho^{2} N_{A}^{2} \langle \sigma v \rangle_{jkl} Y_{j} Y_{k} Y_{l}$ Specify number of particles Thermonuclear cross created or destroyed; take section into account reactions between the same (indistinguishable species) Y. Abundance

 λ ...decay rate

Nuclear reaction networks

• Set of coupled differential equations

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{jk}^{i} \rho N_{A} \langle \sigma v \rangle_{jk} Y_{j} Y_{k} + \sum_{j,k,l} N_{jkl}^{i} \rho^{2} N_{A}^{2} \langle \sigma v \rangle_{jkl} Y_{j} Y_{k} Y_{l}$$

- Decays, photodisintegrations, reactions with leptons (e⁻,e⁺, v)
- Two-particle reactions
- Three-particle reactions (e.g. triple- α reaction)

Discretization and Euler's method

• Discretization of system of DEs:

$$\frac{\mathbf{Y}(t + \Delta t) - \mathbf{Y}(t)}{\Delta t} = (1 - \Theta)\dot{\mathbf{Y}}(t + \Delta t) + \Theta\dot{\mathbf{Y}}(t)$$

- Explicit, forward Euler method for $\Theta = 1$
- Implicit, backward Euler method for $\Theta = 0$
- Accuracy:
 - to first order in time
 - Improves inversely with timestep size
- Forward Euler gives poor performance in astrophysics due to range of timescales
 → stiff system

Backward Euler method

- Backward Euler method requires knowledge of derivative at future time $t+\Delta t$
- Solving backward Euler method is equivalent to finding zeros of

$$\mathscr{Z}(t + \Delta t) \equiv \frac{\mathbf{Y}(t + \Delta t) - \mathbf{Y}(t)}{\Delta t} - \dot{\mathbf{Y}}(t + \Delta t) = 0.$$

 Use Newton-Raphson method with trial abundance

$$\Delta \mathbf{Y} = \left(\frac{\partial \mathscr{U}(t + \Delta t)}{\partial \mathbf{Y}(t + \Delta t)}\right)^{-1} \mathscr{U}_{t}$$

Computational aspects

- Backward Euler method costs:
 - Build Jacobian matrix
 - Solve Jacobian matrix
- But can make use of sparseness of matrix
 - General: every species reacts with every species (dense matrix)
 - Reality: Coulomb terms suppresses captures of heavy nuclei; photodisintegrations emit nucleons or alphas
 → only need to consider ~ a dozen reactions linking each species to each nuclear neighbors

Computational aspects

- Backward Euler method costs:
 - Build Jacobian matrix
 - Solve Jacobian matri
- But can make use o⁻
 - General: every speci (dense matrix)
 - Reality: Coulomb ter nuclei; photodisinteg → only need to consi each species to each

How to Model Nucleosynthesis

In principle: need 3D hydro in order to follow convection, mixing, explosion

Problems:

- Coupling of hydro to reaction networks (nucleosynthesis, energy generation)
- Explosions

Compromise:

- (1D) hydro with reduced energy generation network
- Mixing length theory, convection criteria
- Parameterized explosions (mass cut and/or explosion energy as free parameters)

Nevertheless: mostly reliable nucleosynthesis expected (except for nuclides dependent on explosion mechanism)

Implementation of Networks

- Fully coupled
 - Energy feedback + abundances
- Operator splitting
 - Reduced network for energy generation
 - Abundances in full network (mixing, convection)
- Post-processing
 - Reduced network for energy generation
 - Other abundances from post-processing

Nuclear reaction networks

• Set of coupled differential equations

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{jk}^{i} \rho N_{A} \langle \sigma v \rangle_{jk} Y_{j} Y_{k} + \sum_{j,k,l} N_{jkl}^{i} \rho^{2} N_{A}^{2} \langle \sigma v \rangle_{jkl} Y_{j} Y_{k} Y_{l}$$

- Decays, photodisintegrations, reactions with leptons (e⁻,e⁺, v)
- Two-particle reactions
- Three-particle reactions (e.g. triple- α reaction)

Nuclear physics

- Need to know the relevant nuclear physics:
 - Properties of nuclei (mass, half-life, spin, levels, etc)
 - Properties of reactions between nuclei (and leptons, photons)
- Can measure (if stable or long-lived):
 - mass, half-life, spin, levels
 - Some cross sections
- But need also very short-lived nuclei and their reactions
 - \rightarrow theoretical predictions

Example: vp-process

Nuclear Physics

- All involved reaction rates from theory predictions (Hauser-Feshbach calculations)
- Nuclear masses: increasing number measured at Penning traps (SHIPTRAP, JYFLTRAP, CPT, etc)
- Upgrades to current facilities and future facilities hold promise to gain more experimental information in the relevant region

Penning Trap Mass Measurements

Critical (and not so critical) reactions

Frohlich et al (2012)

Trajectory independence

(p,g)-(g,p) equilibrium abundances shown

(n,p) reactions on nuclei with highest abundances determine upward flow

Mass uncertainties may impact equilibrium

Trajectory independence

Nuclear properties (Q-values, lifetimes, reaction rates) determine location of path; nucleosynthesis possible only within well constrained values of Y_n , Y_p , T, r

Also set the timescale required to reach heavier nuclei Trajectory variations only determine how long "effective" conditions prevail how much of the path upwards can be covered "Trajectory-independent" determination of nuclear uncertainties

Implications for Experiments

TABLE VII: List of important reactions with additional information: target halflife, references to the section in which a reaction is discussed, a prioritization, and whether an experimental investigation constrains the rate. For each reaction, also the following is shown for the two plasma temperatures 1.5 and 3.0 GK: the astrophysical energy window [52], the predicted laboratory cross section σ^{lab} at the upper end of the window, and the ground state contribution \mathcal{X} .

	Half-life	T = 1.5 GK		$T = 3.0 {\rm GK}$					
Reaction	of target	Energy window	σ^{lab}	\mathcal{X}	Energy window	σ^{lab}	\mathcal{X}	Section	Constraint
		(MeV)	(mbarn)		(MeV)	(mbarn)			
56 Ni $(n,\gamma)^{57}$ Ni	6.1 d	0.00 - 0.43	8.1	1.00	0.00 - 0.84	6.6	1.00	IV, VB, VD	ok
${}^{56}{ m Ni(n,p)}{}^{56}{ m Co}$		0.00 - 0.62	256	1.00	0.05 - 1.34	493	1.00	IV, VB, VD	ok
${}^{56}\mathrm{Ni}(\mathrm{n},\alpha){}^{53}\mathrm{Fe}$		0.12 - 1.45	0.005	1.00	0.87 - 3.36	1.6	0.76	VD	ok
${}^{56}\mathrm{Ni}(\mathrm{p},\alpha){}^{53}\mathrm{Co}$		9.00 - 10.73	0.0002	0.05	10.24 - 13.13	0.3	0.02	VD	Q
57 Ni(n, γ) 58 Ni	35.6 h	0.00 - 0.39	8.1	1.00	0.00 - 0.77	5.9	0.92	IV, VB, VD	ok
${}^{57}{ m Ni(n,p)}{}^{57}{ m Co}$		0.00 - 0.48	598	0.99	0.00 - 1.02	643	0.84	IV, VB, VD	ok
${}^{57}\mathrm{Ni}(\mathrm{n},\alpha){}^{54}\mathrm{Fe}$		0.00 - 0.50	8.9	1.00	0.00 - 1.14	12.7	0.85	VD	ok
${}^{57}\mathrm{Ni}(\mathrm{p},\gamma){}^{58}\mathrm{Cu}$		0.70 - 1.47	0.0005	1.00	0.82 - 2.13	0.001	0.98	VD	ok
${}^{57}\mathrm{Ni}(\mathrm{p},\alpha){}^{54}\mathrm{Co}$		5.82 - 7.55	0.0002	0.12	7.06 - 9.93	0.13	0.03	VD	\mathbf{Q}
${}^{58}\mathrm{Ni}(\mathrm{n},\gamma){}^{59}\mathrm{Ni}$	stable	0.00 - 0.43	17.5	1.00	0.00 - 0.90	15.0	0.98	IV, VB, VD	ok
${}^{58}Ni(n,p){}^{58}Co$		0.59 - 1.60	8.9	0.79	0.95 - 2.72	114.0	0.24	IV, VB, VD	low
${}^{58}\mathrm{Ni}(\mathrm{n},\alpha){}^{55}\mathrm{Fe}$		0.04 - 1.27	0.05	0.97	0.69 - 3.02	4.5	0.42	VD	low
${}^{58}\mathrm{Ni}(\mathrm{p},\gamma){}^{59}\mathrm{Cu}$		0.86 - 1.75	0.02	1.00	1.06 - 2.59	0.1	0.99	VD	ok
${}^{58}\mathrm{Ni}(\mathrm{p},\alpha){}^{55}\mathrm{Co}$		4.00 - 5.71	0.003	0.24	5.21 - 8.07	1.3	0.07	VD	\mathbf{Q}
59 Ni(n, γ) 60 Ni	$7.6 imes 10^4 m yr$	0.00 - 0.34	21.8	0.93	0.00 - 0.66	8.6	0.73	IV, VB, VD	ok
${}^{59}{ m Ni(n,p)}{}^{59}{ m Co}$		0.01 - 0.58	25.5	0.73	0.05 - 1.31	55.5	0.42	IV, VB, VD	low
${}^{59}\mathrm{Ni}(\mathrm{n},\alpha){}^{56}\mathrm{Fe}$		0.00 - 0.46	2.4	0.89	0.00 - 1.28	4.9	0.55	VD	low
59 Ni(p, γ) 60 Cu		0.92 - 1.86	0.12	0.91	1.18 - 2.60	0.3	0.72	VD	ok
(continued on next page)									