Neutrino Interactions and Nucleosynthesis: Lecture 2

Thermonuclear reaction networks

Carla Fröhlich
North Carolina State University cfrohli@ncsu.edu

Lecture plan

- Lecture 1
- How to make heavy elements
- Neutrinos set the conditions
- Neutron-rich nucleosynthesis
- Proton-rich nucleosynthesis
- Lecture 2
- Thermonuclear reaction networks
- Nuclear inputs

Origin of elements

Origin of elements

How are nuclei made? Where? Through what processes?

Nuclear physics

- Need to know the relevant nuclear physics:
- Properties of nuclei (mass, half-life, spin, levels, etc)
- Properties of reactions between nuclei (and leptons, photons)

Reaction rates

Consider:

- n_{i} : number density of particles of type $i \quad \mathrm{~cm}^{-3}$
- n_{j} : number density of particles of type $j \quad \mathrm{~cm}^{-3}$
- σ : cross section (effective area for reaction) cm^{2}

- Reactions per time per volume
$=$ relative flux of particles i
\times number of particles j
\times cross section
$r=n_{i} \vee n_{j} \sigma(v)$
$\mathrm{cm}^{-3} \mathrm{~cm} \mathrm{~s}^{-1}$
cm^{-3}
cm^{2}
$\mathrm{cm}^{-3} \mathrm{~s}^{-1}$

Reaction rates

- Previously: particles i move at constant v
- For constant relative velocity between particles i and j
\rightarrow reacts / vol / time: $\quad r_{i, j}=\int \sigma \cdot\left|\vec{v}_{i}-\vec{v}_{j}\right| d n_{i} d n_{j}$
- General: projectiles and targets follow velocity distribution

$$
r_{i, j}=n_{i} n_{j} \int \sigma\left(\left|\vec{v}_{i}-\vec{v}_{j}\right|\right)\left|\vec{v}_{i}-\vec{v}_{j}\right| \phi\left(\vec{v}_{i}\right) \phi\left(\vec{v}_{j}\right) d^{3} v_{i} d^{3} v_{j}
$$

Integral depends on type of particles and distribution

Maxwell-Boltzmann distribution

- Nuclei in astrophysical plasma are not monoenergetic
- They obey MB distribution

THE MAXWELL-BOLTZMANN DISTRIBUTION

Reaction rates

- Use center-of-mass coordinates, carry out integration, and remember that $\int \phi(\vec{V}) d^{3} V=1$
reaction rate becomes $\quad r_{i ; j}=n_{i} n_{j}\langle\sigma v\rangle_{i ; j}$
with the thermonuclear cross section < $\sigma v\rangle$

$$
\langle\sigma v\rangle(T)=\left(\frac{8}{\mu \pi}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} E \sigma(E) \exp (-E / k T) d E
$$

- Only depends on temperature
- If we know σ (E), we can get < $\sigma \mathrm{V}>$

Astrophysical S-factor

- Use known energy dependence of $\sigma(E)$
- For charged particles: σ (E) is proportional to:
- Coulomb barrier penetration $\sim \exp \left(-E^{1 / 2}\right)$
- Nuclear size $\sim 1 / E$
- All other energy dependencies are lumped together into astrophysical S-factor S(E)
- Why?
- For non-resonant reactions: $\mathrm{S}(\mathrm{E})$ is slowly varying \rightarrow better to work with $\mathrm{S}(\mathrm{E})$ if extrapolations are needed

Astrophysical S-factor

- Cross section $\sigma=E^{-1} \times \exp \left(-E^{1 / 2}\right) \times S(E)$
- Reaction rate becomes

$$
\begin{aligned}
\langle\sigma v\rangle & =\left(\frac{8}{\mu \pi}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} E \sigma(E) \exp (-E / k T) d E \\
& =\left(\frac{8}{\mu \pi}\right)^{1 / 2} \frac{1}{(k T)^{3 / 2}} \int_{0}^{\infty} S(E) \exp \left(-b E^{-1 / 2}\right) \exp (-E / k T) d E .
\end{aligned}
$$

- $S(E)$ is slowly varying with E, so integral is dominated by the two exponentials

Gamow peak

Most effective stellar energy

Nuclear reaction networks

- Turn number of reactions per volume and time into differential equation, for a reaction $i(j, o) m$

$$
r_{i ; j}=\frac{1}{1+\delta_{i j}} n_{i} n_{j}\langle\sigma v\rangle \quad \longrightarrow \begin{aligned}
& \left(\frac{\partial n_{i}}{\partial t}\right)_{\rho}=\left(\frac{\partial n_{j}}{\partial t}\right)_{\rho}=-r_{i ; j} \\
& \left(\frac{\partial n_{o}}{\partial t}\right)_{\rho}=\left(\frac{\partial n_{m}}{\partial t}\right)_{\rho}=+r_{i ; j}
\end{aligned}
$$

- Total rate of change of number density:

$$
\dot{n}_{i}=\left(\frac{\partial n_{i}}{\partial t}\right)_{\rho}+n_{i} \frac{\dot{\rho}}{\rho}
$$

- Includes changes due to density change (we are not interested in those)

Abundances, mass fractions

- Matter density $\rho\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
- Number density n depends on matter density
- Can we separate dependence on matter density?
\rightarrow Define abundance $Y=n / \rho N_{A}$
- Units of abundance: mole g^{-1}
- Mass fraction $X_{i}=A_{i} Y_{i}$ with normalized sum

Nuclear reaction networks

- Use abundance $Y_{i}=\frac{n_{i}}{\rho N_{A}} \quad \dot{Y}_{i}=\frac{\dot{n}_{i}}{\rho N_{A}}-\frac{n_{i}}{\rho N_{A}} \frac{\dot{\rho}}{\rho}$
- Derivative becomes:

$$
\dot{Y}_{i}=\frac{1}{\rho N_{A}}\left(\frac{\partial n_{i}}{\partial t}\right)_{\rho}=-\frac{r_{i, j}}{\rho N_{A}}=-\frac{1}{1+\delta_{i j}} \rho N_{A}\langle\sigma v\rangle_{i ; j} Y_{i} Y_{j}
$$

- For decays (and reactions with photons and leptons):
- "decay rate" λ
- Derivate becomes $\dot{Y}_{i}=-\lambda_{i} Y_{i}$

Inverse reactions

- Many reactions are the inverse of an other reaction
- Forward and inverse reactions are linked by time reversal invariance
- For reaction $\mathrm{i}(\mathrm{j}, \mathrm{o}) \mathrm{m}$ the thermonuclear cross section depends on
- Q-value (energy difference between products and reactants)
- Partition functions (Energy weighted density of states)

$$
\langle\sigma v\rangle_{i, j, o}=\frac{1+\delta_{i j}}{1+\delta_{o m}} \frac{G_{m} g_{o}}{G_{i} g_{j}}\left(\frac{\mu_{o m}}{\mu_{i j}}\right)^{3 / 2} \exp \left(-Q_{o, j} / k T\right)\langle\sigma v\rangle_{m ; o, j}
$$

Nuclear reaction networks

- Set of coupled differential equations

$$
\dot{Y}_{i}=\sum_{j} N_{j}^{i} \lambda_{j} Y_{j}+\sum_{j, k} N_{j k}^{i} \rho N_{A}\langle\sigma v\rangle_{j k} Y_{j} Y_{k}+\sum_{j, k, l} N_{j k l}^{i} \rho^{2} N_{A}^{2}\langle\sigma v\rangle_{j k l} Y_{j} Y_{k} Y_{l}
$$

Specify number of particles created or destroyed; take

Thermonuclear cross section into account reactions
between the same (indistinguishable species)

Y .. Abundance
λ...decay rate

Nuclear reaction networks

- Set of coupled differential equations
$\dot{Y}_{i}=\sum_{j} N_{j}^{i} \lambda_{j} Y_{j}+\sum_{j, k} N_{j k}^{i} \rho N_{A}\langle\sigma v\rangle_{j k} Y_{j} Y_{k}+\sum_{j, k, k} N_{j k l}^{i} \rho^{2} N_{A}^{2}\langle\sigma v\rangle_{j k l} Y_{j} Y_{k} Y_{l}$
- Decays, photodisintegrations, reactions with leptons ($\mathrm{e}^{-}, \mathrm{e}^{+}, \mathrm{v}$)
- Two-particle reactions
- Three-particle reactions (e.g. triple- α reaction)

Discretization and Euler's method

- Discretization of system of DEs:

$$
\frac{\boldsymbol{Y}(t+\Delta t)-\boldsymbol{Y}(t)}{\Delta t}=(1-\Theta) \dot{Y}(t+\Delta t)+\Theta \dot{Y}(t)
$$

- Explicit, forward Euler method for $\Theta=1$
- Implicit, backward Euler method for $\Theta=0$
- Accuracy:
- to first order in time
- Improves inversely with timestep size
- Forward Euler gives poor performance in astrophysics due to range of timescales \rightarrow stiff system

Backward Euler method

- Backward Euler method requires knowledge of derivative at future time $t+\Delta t$
- Solving backward Euler method is equivalent to finding zeros of

$$
\mathscr{L}(t+\Delta t) \equiv \frac{\boldsymbol{Y}(t+\Delta t)-\boldsymbol{Y}(t)}{\Delta t}-\dot{\boldsymbol{Y}}(t+\Delta t)=0 .
$$

- Use Newton-Raphson method with trial abundance

$$
\Delta \boldsymbol{Y}=\left(\frac{\partial \mathscr{Z}(t+\Delta t)}{\partial \boldsymbol{Y}(t+\Delta t)}\right)^{-1} \mathscr{L}:
$$

Computational aspects

- Backward Euler method costs:
- Build Jacobian matrix
- Solve Jacobian matrix
- But can make use of sparseness of matrix
- General: every species reacts with every species (dense matrix)
- Reality: Coulomb terms suppresses captures of heavy nuclei; photodisintegrations emit nucleons or alphas \rightarrow only need to consider \sim a dozen reactions linking each species to each nuclear neighbors

Computational aspects

- Backward Euler method costs:
- Build Jacobian matrix
- Solve Jacobian matri
- But can make use o
- General: every speci (dense matrix)
- Reality: Coulomb ter nuclei; photodisinteg \rightarrow only need to consi each species to each

How to Model Nucleosynthesis

In principle: need 3D hydro in order to follow convection, mixing, explosion
Problems:

- Coupling of hydro to reaction networks (nucleosynthesis, energy generation)
- Explosions

Compromise:

- (1D) hydro with reduced energy generation network
- Mixing length theory, convection criteria
- Parameterized explosions (mass cut and/or explosion energy as free parameters)
Nevertheless: mostly reliable nucleosynthesis expected (except for nuclides dependent on explosion mechanism)

Implementation of Networks

- Fully coupled
- Energy feedback + abundances
- Operator splitting
- Reduced network for energy generation
- Abundances in full network (mixing, convection)
- Post-processing
- Reduced network for energy generation
- Other abundances from post-processing

Nuclear reaction networks

- Set of coupled differential equations
$\dot{Y}_{i}=\sum_{j} N_{j}^{i} \lambda_{j} Y_{j}+\sum_{j, k} N_{j k}^{i} \rho N_{A}\langle\sigma v\rangle_{j k} Y_{j} Y_{k}+\sum_{j, k, k} N_{j k l}^{i} \rho^{2} N_{A}^{2}\langle\sigma v\rangle_{j k l} Y_{j} Y_{k} Y_{l}$
- Decays, photodisintegrations, reactions with leptons ($\mathrm{e}^{-}, \mathrm{e}^{+}, \mathrm{v}$)
- Two-particle reactions
- Three-particle reactions (e.g. triple- α reaction)

Nuclear physics

- Need to know the relevant nuclear physics:
- Properties of nuclei (mass, half-life, spin, levels, etc)
- Properties of reactions between nuclei (and leptons, photons)
- Can measure (if stable or long-lived):
- mass, half-life, spin, levels
- Some cross sections
- But need also very short-lived nuclei and their reactions
- $\quad \rightarrow$ theoretical predictions

Example: vp-process

Nuclear Physics

- All involved reaction rates from theory predictions (Hauser-Feshbach calculations)
- Nuclear masses: increasing number measured at Penning traps (SHIPTRAP, JYFLTRAP, CPT, etc)
- Upgrades to current facilities and future facilities hold promise to gain more experimental information in the relevant region

Penning Trap Mass Measurements

Critical (and not so critical) reactions

Trajectory independence

(p, g)-(g,p) equilibrium abundances shown
(n, p) reactions on nuclei with highest abundances determine upward flow
Mass uncertainties may impact equilibrium

Trajectory independence

Nuclear properties (Q -values, lifetimes, reaction rates) determine location of path; nucleosynthesis possible only within well constrained values of Y_{n}, Y_{p}, T, r
Also set the timescale required to reach heavier nuclei
Trajectory variations only determine how long "effective" conditions prevail how much of the path upwards can be covered "Trajectory-independent" determination of nuclear uncertainties

Implications for Experiments

TABLE VII: List of important reactions with additional information: target halflife, references to the section in which a reaction is discussed, a prioritization, and whether an experimental investigation constrains the rate. For each reaction, also the following is shown for the two plasma temperatures 1.5 and 3.0 GK : the astrophysical energy window [52], the predicted laboratory cross section $\sigma^{\text {lab }}$ at the upper end of the window, and the ground state contribution \mathcal{X}.

Reaction	Half-life of target	$T=1.5 \mathrm{GK}$			$T=3.0 \mathrm{GK}$			Section	Constraint
		Energy window (MeV)	$\begin{gathered} \sigma^{\mathrm{lab}} \\ (\mathrm{mbarn}) \end{gathered}$	\mathcal{X}	Energy window (MeV)	$\begin{gathered} \sigma^{\text {lab }} \\ \text { (mbarn) } \end{gathered}$	\mathcal{X}		
${ }^{56} \mathrm{Ni}(\mathrm{n}, \gamma){ }^{57} \mathrm{Ni}$	6.1 d	0.00-0.43	8.1	1.00	0.00-0.84	6.6	1.0	IV, V B, V D	ok
${ }^{56} \mathrm{Ni}(\mathrm{n}, \mathrm{p})^{56} \mathrm{Co}$		$0.00-0.62$	256	1.00	0.05-1.34	493	1.00	IV, V B, V D	ok
${ }^{56} \mathrm{Ni}(\mathrm{n}, \alpha)^{53} \mathrm{Fe}$		0.12-1.45	0.005	1.00	0.87-3.36	1.6	0.76		ok
${ }^{56} \mathrm{Ni}(\mathrm{p}, \alpha)^{53} \mathrm{Co}$		$9.00-10.73$	0.0002	0.05	$10.24-13.13$	0.3	0.02		Q
${ }^{57} \mathrm{Ni}(\mathrm{n}, \gamma){ }^{58} \mathrm{Ni}$	35.6 h	$0.00-0.39$	8.1	1.00	$0.00-0.77$	5.9	0.92	IV, V B, V D	ok
${ }^{57} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{57} \mathrm{Co}$		0.00-0.48	598	0.99	0.00-1.02	643	0.84	IV, V B, V D	ok
${ }^{57} \mathrm{Ni}(\mathrm{n}, \alpha){ }^{54} \mathrm{Fe}$		0.00-0.50	8.9	1.00	0.00-1.14	12.7	0.85	V D	ok
${ }^{57} \mathrm{Ni}(\mathrm{p}, \gamma){ }^{58} \mathrm{Cu}$		$0.70-1.47$	0.0005	1.00	$0.82-2.13$	0.001	0.98	V D	ok
${ }^{57} \mathrm{Ni}(\mathrm{p}, \alpha){ }^{54} \mathrm{Co}$		$5.82-7.55$	0.0002	0.12	$7.06-9.93$	0.13	0.03	V D	Q
${ }^{58} \mathrm{Ni}(\mathrm{n}, \gamma){ }^{59} \mathrm{Ni}$	stable	0.00-0.43	17.5	1.00	0.00-0.90	15.0	0.98	$\mathrm{IV}, \mathrm{V} \mathrm{B}$,	ok
${ }^{58} \mathrm{Ni}(\mathrm{n}, \mathrm{p})^{58} \mathrm{Co}$		0.59-1.60	8.9	0.79	$0.95-2.72$	114.0	0.24	IV, V B, V D	low
${ }^{58} \mathrm{Ni}(\mathrm{n}, \alpha)^{55} \mathrm{Fe}$		0.04-1.27	0.05	0.97	0.69-3.02	4.5	0.42	V D	low
${ }^{58} \mathrm{Ni}(\mathrm{p}, \gamma){ }^{59} \mathrm{Cu}$		0.86-1.75	0.02	1.00	$1.06-2.59$	0.1	0.99	V D	ok
${ }^{58} \mathrm{Ni}(\mathrm{p}, \alpha)^{55} \mathrm{Co}$		$4.00-5.71$	0.003	0.24	$5.21-8.07$	1.3	0.07	V D	Q
${ }^{59} \mathrm{Ni}(\mathrm{n}, \gamma){ }^{60} \mathrm{Ni}$	$7.6 \times 10^{4} \mathrm{yr}$	$0.00-0.34$	21.8	0.93	$0.00-0.66$	8.6	0.73	IV, V B, V D	ok
${ }^{59} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{59} \mathrm{Co}$		0.01-0.58	25.5	0.73	0.05-1.31	55.5	0.42	IV, V B, V D	low
${ }^{59} \mathrm{Ni}(\mathrm{n}, \alpha){ }^{56} \mathrm{Fe}$		0.00-0.46	2.4	0.89	0.00-1.28	4.9	0.55		low
$\begin{aligned} & { }^{59} \mathrm{Ni}(\mathrm{p}, \gamma)^{60} \mathrm{Cu} \\ & \text { (continued on nex } \end{aligned}$	xt page)	0.92-1.86	0.12	0.91	$1.18-2.60$	0.3	0.72		ok

