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Lecture plan

• Lecture 1

• How to make heavy elements

• Neutrinos set the conditions

• Neutron-rich nucleosynthesis

• Proton-rich nucleosynthesis

• Lecture 2

• Thermonuclear reaction networks

• Nuclear inputs
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Origin of elements

Hydrogen
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Stellar burning

Big Bang

Iron

Group

Solar system abundances

r-process r-process

s-process s-process
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Origin of elements

4How are nuclei made? Where? Through what processes?



Nuclear physics

• Need to know the relevant nuclear physics:

• Properties of nuclei (mass, half-life, spin, levels, etc)

• Properties of reactions between nuclei (and leptons, 

photons)
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Reaction rates

Consider:

• ni: number density of particles of type i cm-3

• nj: number density of particles of type j cm-3

• σ: cross section (effective area for reaction) cm2

i
j targetprojectile

• Reactions per time per volume 

= relative flux of particles i cm-3 cm s-1

× number of particles j cm-3 

× cross section cm2 

r =  ni v nj σ(v) cm-3 s-1
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Reaction rates

• Previously: particles i move at constant v

• For constant relative velocity between particles 

i and j

� reacts / vol / time:

• General: projectiles and targets follow velocity 

distribution

Integral depends on type of particles and distribution
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Maxwell-Boltzmann distribution

• Nuclei in astrophysical plasma are not mono-

energetic

• They obey MB distribution
P
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Emp = kT

Φ ~ E Φ ~ E exp(-kT/E)

Φ ~ exp(-kT/E)



Reaction rates

• Use center-of-mass coordinates, carry out 

integration, and remember that 

reaction rate becomes

with the thermonuclear cross section <σv>

• Only depends on temperature

• If we know σ (E), we can get <σv>
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Astrophysical S-factor

• Use known energy dependence of  σ (E)

• For charged particles: σ (E) is proportional to:

• Coulomb barrier penetration ~exp(-E ½ )

• Nuclear size ~1/E

• All other energy dependencies are lumped 

together into astrophysical S-factor S(E)

• Why?

• For non-resonant reactions: S(E) is slowly varying

� better to work with S(E) if extrapolations are needed
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Astrophysical S-factor

• Cross section σ =  E-1 × exp(-E½) × S(E)

• Reaction rate becomes

• S(E) is slowly varying with E, so integral is dominated 

by the two exponentials
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Gamow peak

12
Most effective stellar energy



Nuclear reaction networks

• Turn number of reactions per volume and time 

into differential equation,

for a reaction

• Total rate of change of number density:

• Includes changes due to density change (we are not 

interested in those)
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Abundances, mass fractions

• Matter density ρ (g cm-3)

• Number density n depends on matter density

• Can we separate dependence on matter 

density?density?

� Define abundance Y = n / ρ NA

• Units of abundance: mole g-1

• Mass fraction Xi = Ai Yi with normalized sum

14



Nuclear reaction networks

• Use abundance 

• Derivative becomes:

• For decays (and reactions with photons and 

leptons):

• “decay rate” λ

• Derivate becomes
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Inverse reactions

• Many reactions are the inverse of an other 

reaction

• Forward and inverse reactions are linked by 

time reversal invariance

• For reaction i(j,o)m the thermonuclear cross 

section depends on

• Q-value (energy difference between products and 

reactants)

• Partition functions (Energy weighted density of 

states)
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Nuclear reaction networks

• Set of coupled differential equations
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Thermonuclear cross 
section
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λ …decay rate



Nuclear reaction networks

• Set of coupled differential equations
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• Decays, photodisintegrations, reactions with leptons (e-,e+, ν)

• Two-particle reactions

• Three-particle reactions (e.g. triple-α reaction)
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Discretization and Euler’s method

• Discretization of system of DEs:

• Explicit, forward Euler method for Θ=1

• Implicit, backward Euler method for Θ=0

• Accuracy:

• to first order in time

• Improves inversely with timestep size

• Forward Euler gives poor performance in 

astrophysics due to range of timescales

� stiff system



Backward Euler method

• Backward Euler method requires knowledge of 

derivative at future time t+∆t

• Solving backward Euler method is equivalent to 

finding zeros of

• Use Newton-Raphson method with trial 

abundance

20



Computational aspects

• Backward Euler method costs:

• Build Jacobian matrix

• Solve Jacobian matrix

• But can make use of sparseness of matrix

• General: every species reacts with every species • General: every species reacts with every species 

(dense matrix)

• Reality: Coulomb terms suppresses captures of heavy 

nuclei; photodisintegrations emit nucleons or alphas

� only need to consider ~ a dozen reactions linking 

each species to each nuclear neighbors
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How to Model Nucleosynthesis

In principle: need 3D hydro in order to follow convection, 

mixing, explosion

Problems:

• Coupling of hydro to reaction networks (nucleosynthesis, 

energy generation)

• Explosions

C. Fröhlich

• Explosions

Compromise:

• (1D) hydro with reduced energy generation network

• Mixing length theory, convection criteria

• Parameterized explosions (mass cut and/or explosion energy 

as free parameters)

Nevertheless: mostly reliable nucleosynthesis expected

(except for nuclides dependent on explosion mechanism)



Implementation of Networks

• Fully coupled

• Energy feedback + abundances

• Operator splitting

• Reduced network for energy generation

• Abundances in full network (mixing, convection)

C. Fröhlich

• Abundances in full network (mixing, convection)

• Post-processing

• Reduced network for energy generation

• Other abundances from post-processing



Nuclear reaction networks

• Set of coupled differential equations
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• Decays, photodisintegrations, reactions with leptons (e-,e+, ν)

• Two-particle reactions

• Three-particle reactions (e.g. triple-α reaction)
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Nuclear physics

• Need to know the relevant nuclear physics:

• Properties of nuclei (mass, half-life, spin, levels, etc)

• Properties of reactions between nuclei (and leptons, 

photons)

• Can measure (if stable or long-lived):• Can measure (if stable or long-lived):

• mass, half-life, spin, levels

• Some cross sections

• But need also very short-lived nuclei and their 

reactions

• � theoretical predictions
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Example: νp-process
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Nuclear Physics

• All involved reaction rates from theory 

predictions (Hauser-Feshbach calculations)

• Nuclear masses: increasing number measured 

at Penning traps (SHIPTRAP, JYFLTRAP, CPT, 

etc)

• Upgrades to current facilities and future • Upgrades to current facilities and future 

facilities hold promise to gain more 

experimental information in the relevant region
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Critical (and not so critical) reactions
e

t 
a

l 
(2

0
1

2
)

F
ro

h
lic

h
e

t 
a

l 
(



Trajectory independence
e

t 
a

l 
(2

0
1

2
)

• (p,g)-(g,p) equilibrium abundances shown

• (n,p) reactions on nuclei with highest abundances determine 
upward flow

• Mass uncertainties may impact equilibrium
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Trajectory independence
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• Nuclear properties (Q-values, lifetimes, reaction rates) determine 
location of path; nucleosynthesis possible only within well 
constrained values of Yn, Yp, T, r

• Also set the timescale required to reach heavier nuclei

• Trajectory variations only determine how long “effective” 
conditions prevail  how much of the path upwards can be covered

• “Trajectory-independent” determination of nuclear uncertainties
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Implications for Experiments
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