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Neutron Stars
1-2 Solar Masses	


~12 km radius

Outer Crust	


nuclei + electrons	


!
Inner Crust	


nuclei + neutrons + 	


electrons	


!
Core	


  neutrons+protons+electrons+…

We will concentrate 	


on the core: bulk of the star	


dominates the M/R curve	


important for neutrino cooling

charge neutrality + small electron mass → ~10% electrons, protons

Predicted by Baade and Zwicky 1 year after discovery of the neutron 



QCD phase diagram (minimal)

from FAIR, new facility in Darmstadt
high density and cold very difficult to reach in experiments	



Color superconductor at very high density; important for neutron stars?



Neutron Star Mass/Radius Relations

Transitions to superconducting quark matter	


Wide range of predictions for mass/radius relationship

For many years only ~1.4-1.5 solar mass neutron stars observed	


Recently several observed with ~ 2 solar masses!

see Demorest, et al	


Nature 467: 2081 (2010)



Nuclear Interactions
Up to ~2-3 x nuclear densities, matter can be described	


as a system of interacting nucleons

Phase shifts, AV8’
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At ⇢ = ⇢0, kF ' 330 MeV. Two neutrons have ECM ' 120 MeV,
ELAB '240 MeV. ! Argonne NN accurate up to (at least) 2-3⇢0.
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phase shifts for NN scattering - simple model (AV8’)	


    compared to experiment

At r=2 ρ0 : kF ~ 2 fm-1 	



implies 2 nucleons at Fermi surface have ECM = 160 MeV; Elab ~ 320 MeV



Nuclear Interactions

Very low densities dominated by 1S0 interaction

H =
X

i

p2i
2m

+
X

i<j

V0 �(rij)

Very similar to cold atomic Fermi Gases

Neutron-Neutron Scattering length ~ -18 fm
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TABLE VIII. Scattering lengths and effective ranges in fm.
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FIG. 3. Phase shifts in the Pq channel for np, nn, and
pp scattering, compared to various partial-wave phase-shift
analyses.

Reference [32].
Reference [28].
'Reference [35].
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IV. PROJECTION INTO OPERATOR FORMAT

We can project the strong interaction potential given
above &om S,T, T, states into an operator format with
18 terms

vi~ = ) vp(re )O,~ . (25)
p=1,18

Here the first 14 operators are the same charge-
independent ones used in the Argonne v14 potential and
are given by

O,",='" = &,T;.T, , ~.--~&, (~'-~')(T' T~) ~'~ ~V(T' T~). I.S I.S(T'.T~)
L2, L (T;.T~) LI(cr, o~)IL (cr, cr~)(T, T~)I (L S), (L.S) (T; T~) . (26)

These 14 components are denoted by the abbreviations
c, r, o, o r, t, tr, l s, Isr, l2, l2r, l2o, l2o.r, ls2, and l s2r.
The four additional operators break charge independence
and are given by

0,". . ' = Ta, a (cr; cr~)Ti, a S;;Ta, a (Tz, +T )zI(27)

1 1VtT 0 [2 (Vl1 pp + Vl 1,nn) Vl 1)lnp]

Finally, the charge-asymmetric terms are given by

(34)

The charge-dependent tensor term comes only from the
spin-triplet channel, and reads

c CI CD~ CA/VS1,~~ = Vsl + Vsl &ij + Vsl (uzi + &zj )

For the charge-independent potential this implies
CI 1( cSl $( Sl,pp + Sl,nn + Sl,np)

We then project

ls(9"11 + 3"lo + 3vol + "oo) I
1 CI CI CI CI

1 CI CI CI CI
ls (3v11 3vlo + vol Voo ) I

CI CI CI CI
ls (3v11 + vlo 3vo1 voo ) I

1r CI CI CI CI~16( 11 10 01 + 00) )

(28)

(3Oa)

(3Ob)

(30c)
(30d)

where of course v10 ——v10 p and v00 ——v00 „.A similarCI c CI c

set of projections is used for the I parts of the interac-
tion. For the tensor, spin-orbit, and quadratic spin-orbit
pieces, which exist only in S = 1 channels, the projec-
tions are (x = t, ts, ts2)

where T;z ——3r;r~~ —v, .r~ is the isotensor operator,
defined analogous to the S;~ operator. These terms are
abbreviated as T, oT, tT, and rz. The T, o.T, and tT
operators are charge dependent and are "class II" forces,
while the rz operator is charge asymmetric and is a "class
III" force [25].
The operator potential terms, vp, can be obtained &om

the channel potentials, vsT ~~, by a simple set of projec-
tions. We first introduce charge splitting for the central
T = 1 states,

CA 1( c c
S1 4 k Sl,pp Sl,nn (35)

which leads to
1 CA CAv~z = 4(3"11 + "ol ) I

1 g CA CAq~«4k 11 01 J ~

(36a)
(36b)

As discussed in the previous section, we fix v01 to repro-
duce the singlet nn scattering length by adjusting the pa-
rameter P01 to be slightly difFerent from P01 „„.We are
unaware of any nn data that would allow us to fix v11,
but there have been numerous theoretical predictions for
charge-symmetry breaking based on p-~ and ~-g-g' mix-
ing. Such models suggest that v11 should be somewhat
larger than vl, but with a similar shape [36]. In the
present work we make the simple assumption v11 = voc1A

which implies there is no v term. We also neglect
the possibility of a charge-asymmetric tensor term v&

which is why we end up with only one charge-asymmetric

4( 11 + 10)
1 x

11 10

(3ia)
(3ib)

The charge-dependent terms in Eq. (28) are given by

CD 1 1 c C Cvsl = —.[-, (vsl, pp+ vsl...) —vsl, .pl
which can be projected as

(32) -200
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FIG. 6. Central, isospin, spin, and spin-isospin components
of the potential. The central potential has a peak value of
2031 MeV at r = 0.pion + 2-pion + short-range repulsion

π



H =
X

i

p2i
2m

+
X

i<j

Vij + ...

Quantum Monte Carlo Methods

Vij =
X

k

V k
ij(rij) O

k
ij

Ok
ij =

⇥
1,�i · �j ,�i · rij�j · rij , L · Sij

⇤
⇥ [1, ⌧i · ⌧j ]

H  = E  

 =

2A(AZ)X

i=1

 (i)(R)

          2A = 7x1019  amplitudes	


for 66 neutrons  

in 3A=198 dimensions



Quantum Monte Carlo (Auxiliary Field Diffusion Monte Carlo)

 0 = exp [�H⌧ ]  T

exp[�H⌧ ] ⇡ exp[�V ⌧/2] exp[�T ⌧ ] exp[�V ⌧/2]

Kinetic Term is a diffusion process in 3A coordinates	


Spin-dependent potential terms rewritten as coupled 
	

 	

 	

 	

 	

 to an auxiliary field which is sampled by Monte Carlo,	


                                 giving rotations of spins (and isospins)

exp[�V �

i

· �
j

⌧ ] =

X

x=±1

exp[�V

1/2
⌧

1/2
�

i

· x] exp[�V

1/2
⌧

1/2
�

j

· x]

The simulation is a branching random walk in 3A coordinates 	


and A spins and isospins.
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Fig. 3. Comparison of the equation of state of cold atoms and neutron matter at low density.
Neutron matter calculations are from Ref. 14). Di↵erences at low density are primarily due to
the e↵ective range of the neutron-neutron interaction. The solid line is a fit to the cold atom
results, the dashed line includes an estimate of e↵ective range e↵ects (see text).

=
#pairsX

i=1

�r2
i

4m

(r � 1)2

(r + 1)2
, (11)

where in the last line the particles have arbitrarily been divided into N/2 spin up -
spin down pairs.

Figure 4 shows the DMC calculations of ⇠ for di↵erent mass ratios. Initial
calculations for di↵erent mass ratios were reported in Ref. 49). From Eq. 11 we can
see that the energy change can be evaluated in perturbation theory near r=1.

�(E/N) = h0|�H| 0i = (1/2)hP 2
ij

/(4m)i|
r=1

(r � 1)2

(r + 1)2
, (12)

where the 1/2 comes from the number of pairs (N/2), P
ij

is the total momentum of
a pair, and the expectation value is to be taken in the ground state of the equal mass
unitary gas. Note that these calculations were performed for small but finite value
of the e↵ective range, yielding a slightly larger value of ⇠ than at zero e↵ective range.
This rather asymmetric way of writing the energy di↵erence is valuable because it
tells us something about the character of the state. For a BCS-like state with all
pairs at P = 0 the energy di↵erence is zero in first-order perturbation theory. Of
course the free Fermi Gas can also be written in this manner. The di↵erence is finite
for the case when the ground state wave function does not have a spin down particle
at �p for every spin up particle at momentum p.

Equation of State (E/A) for neutrons and cold Fermi atoms
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effective range



Superfluidity (s-wave)

Zweirlein

Spin up, down densities in a trap
ρ

ρ
radius

� = �
�2k2

F

2m
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� = 0.50 (03)

(kmin/kf )2 = 0.80(10)
JC and Reddy, PRL 2005

� = 0.45(05)
JC and Reddy, PRL 2007	



analyzing MIT data



Superfluid Pairing Gap

11

correspond to the traditional definition of the pairing gap.
The fact that the pairing gap is so large, a sizable fraction of the Fermi energy,

makes it possible to use QMC methods to accurately calculate the gap by separately
calculating the energies of the even and odd particle systems. In addition, the fact
that the energy per particle shows no significant shell e↵ects for reasonably small
systems (N > 30) makes it much easier to approach the continuum limit. Though
there is an upper bound principle for the even and odd systems, there is no specific
bound on the pairing gap.

The original calculations of the pairing gap in cold atoms at unitarity found
�/E

FG

⇡ 0.9 or � = 0.55(5).17) Subsequent improvements to the wave function51)

found a slightly reduced value for the gap, � = 0.50(5). These results can be com-
pared to an extraction of the pairing gap from the measured density distributions in
partially spin-polarized trapped cold atoms33) and measurements of the RF response
in such systems,52) who find � = 0.45(5) and � = 0.44(3), respectively.

The pairing gap in neutron matter has historically been the subject of a great
deal of interest and theoretical activity.53), 54) QMC calculations of the pairing gap
were performed in 13) and 14). These calculations used the s-wave and s- & p-wave
components of the AV18 interaction, respectively. A summary of the results are
shown in Fig. 6.13)
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Fig. 6. Pairing gap in cold atoms and neutron matter. BCS mean-field results are shown as solid
lines, DMC results are shown as symbols. The pairing gaps are divided with the relevant one-
body quantity, namely the Fermi energy EF (analogously to the ground-state energy in Fig. 11
being divided with EFG = 3EF /5.

In the figure, BCS results are given by solid lines. In the weak-coupling limit,
the pairing gap is expected to be reduced from the BCS value by (1/4e)1/3 ⇡ 0.45

Cold Atoms have highest superfluid gap / EF of any system;	


Neutrons have highest pairing gap / EF in nature.

Solid lines: 	


      BCS mean-field theory	


Points w/ error bars: 	


      QMC

Gezerlis and Carlson, PRC 2010, 2012



Equation of State at Higher Densities: 	


near nuclear saturation

What is the Symmetry energy?

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy

Assumption from experiments:

ESNM(⇢0) = �16MeV , ⇢0 = 0.16fm�3 , Esym = EPNM(⇢0) + 16

At ⇢0 we access Esym by studying PNM.
Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure

From experiments:

What is the Symmetry energy?

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy

Assumption from experiments:

ESNM(⇢0) = �16MeV , ⇢0 = 0.16fm�3 , Esym = EPNM(⇢0) + 16

At ⇢0 we access Esym by studying PNM.
Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure

The symmetry energy is accesible (indirectly) by experiment



At higher densities three-nucleon interactions 	


start to become important

Three-body forces

Urbana–Illinois Vijk models processes like

π

π

∆

π

π

π

π∆

π

π

π

∆

π

∆

+ short-range correlations (spin/isospin independent).

Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure

Calibrated to light nucleiLight nuclei spectrum computed with GFMC

Carlson, Pieper, Wiringa, many papers

Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure



Neutron matter

We consider di↵erent forms of three-neutron interaction by only requiring
a particular value of Esym at saturation.
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Consider a wide range of three-nucleon forces that give the same 
symmetry energy and then see how they extrapolate to high density



Neutron matter

Equation of state of neutron matter using Argonne forces:
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Gandolfi, Carlson, Reddy 2012

Equations of state with a fixed symmetry energy



Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ⇢0 using

Esym(⇢) = Esym +
L

3

⇢ � 0.16

0.16
+ · · ·

30 31 32 33 34 35 36
E

sym
 (MeV)
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L
 (
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e

V
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AV8’+UIX

E
sym

=33.7 MeV

E
sym

=32.0 MeV

AV8’

Gandolfi et al., EPJ (2014)
Tsang et al., PRC (2012)

Very weak dependence to the model of 3N force for a given Esym.
Chiral Hamiltonians give compatible results.

Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure

Strong Correlation between Symmetry Energy and its Derivative

New chiral interaction models give very similar results



Fits to nuclear masses

– 31 –

Fig. 1.— Comparison of confidence intervals for nuclear mass fitting. Solid figures are the UNEDF0 68%
and 95% confidence intervals of Kortelainen et al. (2010) assuming �UNEDF0 = 2 MeV. The dashed and
dotted figures denote the 68% confidence intervals for a liquid droplet fit assuming �LD = 0.5 MeV and a
Thomas-Fermi finite-range fit assuming �FRT F = 1.6 MeV, respectively. Circles mark values of S v and L
at the respective �2 minima. The solid line is the correlation of Farine, Pearson and Rouben (1978) and the
dashed line is the correlation of Oyamatsu and Iida (2003). The diamond (Myers and Swiatecki 1990) and
triangle (Möller et al. 2012) show finite-range liquid droplet mass fits.

Lattimer and Lim, ApJ 2013



– 32 –

Fig. 2.— Summary of constraints on symmetry energy parameters. The filled ellipsoid indicate joint S v � L
constraints from nuclear masses (Kortelainen et al. 2010). Filled bands show constraints from neutron
skin thicknesses of Sn isotopes (Chen et al. 2010), the dipole polarizability of 208Pb (Piekarewicz et al.
2012), giant dipole resonances (GDR) (Trippa, Coló and Vigezzi 2008), and isotope di↵usion in heavy ion
collisions (HIC) (Tsang et al. 2009). The hatched rectangle shows constraints from fitting astrophysical
M �R observations (Steiner, Lattimer and Brown 2010, 2013). The two closed regions show neutron matter
constraints (H is Hebeler et al. (2010) and G is Gandolfi, Carlson and Reddy (2012)). The enclosed white
area is the experimentally-allowed overlap region.

Variety of Experimental Constraints



Equation of State to Mass / RadiusNeutron matter and neutron star structure

TOV equations:

dP

dr
= �G [m(r) + 4⇡r3P/c2][✏ + P/c2]

r [r � 2Gm(r)/c2]
,

dm(r)

dr
= 4⇡✏r2 ,

J. Lattimer

Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure
from Lattimer

Tolman Oppenheimer Volkov equations: 1939	


used free neutron gas to estimate upper bound of 0.7 solar masses

see Silbar and Reddy: arXiv:nucl-th/0309041 for an introduction



Neutron star structure

EOS used to solve the TOV equations.
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Gandolfi, Carlson, Reddy, PRC (2012).

Accurate measurement of Esym put a constraint to the radius of neutron
stars, OR observation of M and R would constrain Esym!

Stefano Gandolfi (LANL) EOS of neutron matter, symmetry energy, and the e↵ect of ⇤ hyperons to neutron star structure

Neutron Star Mass/Radius: Calculations



Neutron stars

Observations of the mass-radius relation are becoming available:
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Neutron star observations can be used to ’measure’ the EOS and
constrain Esym and L.
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Observations - still controversial

constraints from individual stars	


observations from 	


3 X-ray bursars 	


plus 3 low-mass X-ray binaries

– 29 –
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 6 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ≫ R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.

constraints

Mass radius constraints	


subject to assumptions



Neutron star matter really matters!

Here an ’astrophysical measurement’
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Comparison of theory and observations



What about other particles?  protons

Nuclear matter

Asymmetric nuclear matter E (⇢, x) = ESNM(⇢) + E (2)
sym(⇢)(1� 2x)2 + · · ·
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Gandolfi, Lovato, Carlson, Schmidt, arXiv:1406.3388

Quadratic dependence to isospin-asymmetry look fine.
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Quadratic dependence of E versus n/p imablance

proton fraction also important for neutrino processes



What about other particles?  hyperons, …

Hyperons are bound in nuclei by ~ 30 MeV.	


What happens in dense matter?

⇤ hypernuclei

v⇤N and V ⇤NN are phenomenological (Usmani).
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V ⇤NN (II) is a new form where the parameters have been fine tuned.

As expected, the role of ⇤NN is crucial.
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⇤-neutron matter

EOS obtained by solving for µ⇤(⇢, x) = µn(⇢, x)
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No hyperons for ⇤NN (II) up to ⇢ = 0.5 fm�3!
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Best model gives no hyperons 	


up to 3-4 x saturation density

Hyperons in Neutron Matter



Neutrinos in 	


neutron stars and proto-neutron stars2

Figure 1. Observational limits of sur-
face temperatures for several isolated NSs
compared with the basic theoretical cooling
curve of a non-superfluid NS model.

Figure 2. Internal and surface tempera-
tures; neutrino, photon and total luminosi-
ties (redishifted for a distant observer) for
the same NS model as in Fig. 1.

For the two youngest sources only upper limits on the surface temperature T∞
s

have
been established [5, 6]. The surface temperatures of the next five sources, with ages
103 <

∼ t <
∼ 105 years, have been obtained [7, 8, 9, 10, 11] by fitting their thermal radiation

spectra with hydrogen atmosphere models. Such models are more consistent with other
information on these sources (e.g., Ref. [12]) than the blackbody model. On the contrary,
for Geminga and PSR B1055–52 we present the values of T∞

s
[11, 12] inferred using the

blackbody spectrum because this spectrum is more consistent for these sources. The
surface temperature of RX J1856.4–3754 is still uncertain. Following [4] we adopt the
upper limit T∞

s
< 0.65 MK. Finally, T∞

s
for RX J0720.4–3125 is taken from Ref. [13],

where the observed spectrum is interpreted with a model of a hydrogen atmosphere of
finite depth.

As seen from Fig. 1, observational limits scatter in the T∞
s

− t plane. What can be
learnt on dense matter in NS interiors from this scatter?

3. THEORY VERSUS OBSERVATIONS

A neutron star consists of a thin crust (of mass <
∼ 10−2M⊙, where M⊙ is the solar

mass) and a core (e.g., Ref. [1]). The core-crust interface is placed at the mass density
ρ ∼ ρ0/2, where ρ0 ≈ 2.8 × 1014 g cm−3 is the density of saturated nuclear matter.
The crustal matter contains atomic nuclei, electrons, and (at ρ >

∼ 4 × 1011 g cm−3) free
neutrons. The core is further subdivided into the outer (ρ <

∼ 2ρ0) and inner parts. The
outer core consists of neutrons, with an admixture of protons, electrons, and muons. The
composition of the inner core is still unknown. It may be the same composition as the

Yakovlev 2004



Neutron Star Cooling Introduction

Sensitive to:	


   Equation of state	


   Neutrino Emission	


   Superfluidity	


   Magnetic Fields	


   Surface

Direct Urva:  	


Lattimer, Pethick, Prakash, Haensel (1991)

n

p

νe

e
n ! p+ e+ ⌫̄e
p+ e ! n+ ⌫e

n+N ! p+ e+N + ⌫̄e

modified Urca works throughout the core

threshold associated with Fermi surfaces limit this to ρ > 2 ρ0	


Requires ~ 15% proton fraction 	


to satisfy energy and momentum conservation

much slower



Superfluidity

suppresses familiar neutrino processes	


creates new process: production through Cooper pairing	


3P2 - 3F2 pairing particularly important but not well constrained3

Figure 3. Left: Illustrative models of critical temperatures for proton (p) and neutron (nt)
pairing in NS core. Right: Neutrino emissivity in the same NS core at the temperature
T = 3 × 108 K for non-superfluid matter (thick line; noSF) and in the presence of either
proton pairing (p) or proton and neutron pairing (p+nt). The vertical dotted line indicates
the threshold of the direct Urca process.

outer core but may also contain hyperons, pion or kaon condensates, quark matter, or a
mixture of different phases.

NS matter is strongly degenerate. The EOS, NS masses M and radii are almost temper-
ature independent. Low-mass NSs (M ∼ M⊙) have rather low central densities ρc <

∼ 2 ρ0

and do not possess inner cores. NSs with masses close to the maximum allowable mass
(Mmax ∼ (1.5 − 2.5) M⊙, for different model EOSs) have massive inner cores.

NS cooling is calculated with a cooling code (e.g., Ref. [14]) in the form of cooling

curves, T∞
s

(t) (e.g., Fig. 1). The initial cooling stage, t <
∼ 100 years, is accompanied by

thermal relaxation of NS interiors (Fig. 2). As long as t <
∼ 105 years, a star cools mainly

via neutrino emission from its interiors (mainly from the core); this is the neutrino cooling

stage. Later, at t >
∼ 105 years, the neutrino emission becomes inefficient, and the star

cools via thermal surface emission of photons (the photon cooling stage).
NSs may have different masses, surface magnetic fields, composition of surface layers,

etc., but they are supposed to have the same EOS and superfluid properties of internal
layers. In the absence of exact microscopic theory of NS matter we will use several model
EOSs and phenomenological superfluidity models.

The main regulators of NS cooling are:
(a) EOS and composition of NS cores which affect neutrino emission mechanisms;
(b) Superfluidity of baryons in NSs — it affects neutrino emission and heat content;
(c) The presence of light elements (accreted envelopes) and strong magnetic fields in NS
surface layers. These factors affect the thermal conductivity and the relation between the
internal and surface temperatures of the star.

Yakovlev, et al, 2004	


also see Gezerlis, Pethick, Schwenk arXiv:1406.6109

3x108 K ~ .026 MeV	


typical s-wave pairing gaps ~ 1 MeV	



angle average 3P2 ~ .01 MeV
log(nuclear saturation density in g/cm3) ~ 14.4 



Neutron and Proto-Neutron Star Cooling

Neutron star cooling depends upon	


        Equation of State	


        Neutrino Emission and Propagation	


        Neutron (and proton) Superfluidity	


        + …	


!
Supernovae neutrino emission also depends upon	


        weak response of matter	


        interesting regime at low densities (0.1 ρ0)	


        and moderate temperatures (non-degenerate matter)	


!
Rapid progress in theory and observations	


    	


        



Summary/ Outlook

Rapid progress in our	


   understanding of cold dense matter	


!
Excellent connections to	


     Theory of strongly-correlated matter	


     Experiments in cold atom physics	


     Astrophysical observations	


     Future measurements of 	


         gravitational waves	


     Supernovae physics and 	


         neutrino physics


