Collective Neutrino Oscillations

Huaiyu Duan

International Summer School on AstroComputing 2014 Neutrino \& Nuclear Astrophysics

Outline

> Introduction \& overview
> Understandings \& insights
\checkmark New developments \& challenges

Neutrinos in Supernovae

V oscillations in SN

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathrm{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathrm{p}}\right\rangle
$$

$$
\mathrm{H}=\frac{\mathrm{M}^{2}}{2 E}+\sqrt{2} G_{\mathrm{F}} \operatorname{diag}\left[\eta_{e}, 0,0\right]+\mathrm{H}_{\nu \nu}
$$

ISSAC 2014, La Jolla, July 2014

$(I+I) D$ Single-Angle

Equivalent to an expanding homogeneous neutrino gas

previous assumptions + Trajectory independent neutrino flavor evolution

ISSAC 2014, La Jolla, July 2014
neutrino

Neutrino Self-Coupling

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathbf{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathbf{p}}\right\rangle
$$

mass squared matrix

$$
H=\frac{M^{2}}{2 E}
$$

$$
\begin{gathered}
\text { electron density } \\
+\quad \sqrt{2} G_{\mathrm{F}} \operatorname{diag}\left[n_{e}, 0,0\right]+\mathrm{H}_{\nu \nu}
\end{gathered}
$$ neutrino energy

 \uparrow
v-v forward scattering (self-coupling)

$$
\mathrm{H}_{\nu \nu}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{~d} \mathbf{p}^{\prime}\left(1-\hat{\mathbf{p}} \cdot \hat{\mathbf{p}}^{\prime}\right)\left(\rho_{\mathbf{p}^{\prime}}-\bar{\rho}_{\mathbf{p}^{\prime}}^{*}\right)
$$

ISSAC 2014, La Jolla, July 2014

Tools \& Toy Models

Vacuum Oscillations

neutrinos are generated/detected in flavor states
neutrino mass eigenstates \neq neutrino flavor states

$$
\begin{aligned}
& \left|\nu_{1}\right\rangle=\cos \theta_{\mathrm{v}}\left|\nu_{e}\right\rangle+\sin \theta_{\mathrm{v}}\left|\nu_{\mu}\right\rangle \quad \text { with mass } m_{1} \\
& \left|\nu_{2}\right\rangle=-\sin \theta_{\mathrm{v}}\left|\nu_{e}\right\rangle+\cos \theta_{\mathrm{v}}\left|\nu_{\mu}\right\rangle \quad \text { with mass } m_{2}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\begin{array}{c}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
-\omega \cos 2 \theta_{\mathrm{v}} & \omega \sin 2 \theta_{\mathrm{v}} \\
\omega \sin 2 \theta_{\mathrm{v}} & \omega \cos 2 \theta_{\mathrm{v}}
\end{array}\right] \\
{\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]} \\
\delta m^{2}=m_{2}^{2}-m_{1}^{2}
\end{gathered}
$$

ISSAC 2014, La Jolla, July 2014

Neutrino Flavor Isospin

Two-component system spin- I/2
2×2 Hermitian matrix $\mathbf{H}=H_{0} \mathbb{1}+\mathbf{H} \cdot \boldsymbol{\sigma}$

Neutrino Flavor Isospin

Vacuum Oscillations

ISSAC 2014, La Jolla, July 2014

MSW Effect

electron number density

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\begin{array}{l}
\left\langle\nu_{\nu} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
2 \sqrt{2} G_{\mathrm{F}} n_{e}-\omega \cos 2 \theta_{\mathrm{v}} & \omega \sin 2 \theta_{\mathrm{v}} \\
\omega \sin 2 \theta_{\mathrm{v}} & \omega \cos 2 \theta_{\mathrm{v}}
\end{array}\right]\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]
$$

vac. osc. freq. $\omega=\frac{\delta m^{2}}{2 E_{\nu}}$

ISSAC 2014, La Jolla, July 2014

MSW Again

ISSAC 2014, La Jolla, July 2014

MSW Mechanism

ISSAC 2014, La Jolla, July 2014

Bipolar System

$$
\sigma \sim \frac{n_{\nu}-n_{\bar{\nu}}}{n_{\nu}+n_{\bar{\nu}}} \quad M \vec{g} \sim \frac{\vec{H}_{\mathrm{vac}}}{n_{\nu}+n_{\bar{\nu}}}
$$

ISSAC 2014, La Jolla, July 2014

Bipolar System

Inverted Mass Hierarchy

ISSAC 2014, La Jolla, July 2014

Bipolar System

(HD et al, 2007)
ISSAC 20I4, La Jolla, July 2014

Bipolar System

Normal Mass Hierarchy

ISSAC 2014, La Jolla, July 2014

Comparison

Comparison

ISSAC 2014, La Jolla, July 2014

Homogeneous Gas
 $$
\frac{\mathrm{d}}{\mathrm{~d} r} \vec{s}_{\omega}=\vec{s}_{\omega} \times \vec{H}_{\omega}
$$
 $$
\vec{H}_{\omega}=\vec{H}_{\mathrm{vac}}+\vec{H} \mathrm{matt}+\vec{H}_{\nu \nu}
$$

$$
\vec{H}_{\mathrm{vac}}=\omega \hat{e}_{z}^{\mathrm{v}}
$$

Depend on neutrino energy; disrupt collective oscillations

$$
\begin{array}{ll}
\vec{H}_{\text {matt }}=-\sqrt{2} G_{\mathrm{F}} n_{e} \hat{e}_{z}^{\mathrm{f}} & \text { Independent of neutrino-energy; } \\
& \text { "Ignored" for collective oscillations }
\end{array}
$$

$\vec{H}_{\nu \nu}=-2 \sqrt{2} G_{\mathrm{F}} n_{\nu}^{\text {tot }} \int_{-\infty}^{\infty} \mathrm{d} \omega^{\prime} f_{\omega^{\prime}} \vec{s}_{\omega^{\prime}}$ Independent of neutrino enegy;

Drive collective oscillations
anti-ferromagnetic
distribution
ISSAC 2014, La Jolla, July 2014

Collective Oscillations

rotational symmetry of EoM

collective precession of flavor isospins

rotating "magnetic field"
magnetic spin resonance
new flavor transformation mechanism

ISSAC 2014, La Jolla, July 2014

Collective Oscillations

ISSAC 2014, La Jolla, July 2014

Multi-angle calculation

$$
\delta m^{2}=-3 \times 10^{-3} \mathrm{eV}^{2} \simeq \delta m_{\mathrm{atm}}^{2}, \quad \theta_{\mathrm{v}}=0.1
$$

ISSAC 2014, La Jolla, July 2014

Multi-angle calculation

$$
\delta m^{2}=-3 \times 10^{-3} \mathrm{eV}^{2} \simeq \delta m_{\mathrm{atm}}^{2}, \quad \theta_{\mathrm{v}}=0.1
$$

Precession Mode

precession ansatz
all \vec{s}_{ω} precess about \hat{e}_{z} with a common angular speed ω_{pr}
static frame

Adiabatic Process

$$
n_{\nu}^{\text {tot }} \longrightarrow 0
$$

$$
\overrightarrow{\tilde{H}}_{\omega}=\left(\omega-\omega_{\mathrm{pr}}\right) \hat{e}_{z}
$$

inverted mass hierarchy antineutrino

$$
\omega=+\frac{\frac{\delta m^{2}}{2 E}}{\frac{E_{\nu}}{-\infty}} \begin{aligned}
& \frac{\omega_{\mathrm{pr}}^{0}}{0} \\
& 0 E_{\mathrm{s}}
\end{aligned}
$$

HD, Fuller, Carlson \& Qian (2006)

Spectral Swap/Split

ISSAC 2014, La Jolla, July 2014

ISSAC 2014, La Jolla, July 2014

Linear Stability Analysis

$$
\vec{s}_{\omega} \longrightarrow \rho_{\omega}=\left[\begin{array}{cc}
s_{z} & s_{x}-\mathrm{i} s_{y} \\
s_{x}+\mathrm{i} s_{y} & -s_{z}
\end{array}\right]
$$

$$
\begin{gathered}
\left|s_{z}\right| \approx 1,\left|s_{x}\right| \sim\left|s_{y}\right| \ll 1 \Longrightarrow \text { Keep linear terms of } S=s_{x}-\mathrm{i} s_{y} \\
\dot{\mathrm{i}} \dot{S}_{\omega} \approx \omega S_{\omega}-\mu \int f_{\omega^{\prime}} S_{\omega^{\prime}} \mathrm{d} \omega^{\prime} \\
\text { Pure precession } \Longrightarrow S_{\omega} \propto e^{-\mathrm{i} \omega_{\mathrm{pr}} t}
\end{gathered}
$$

Imaginary $\omega_{\mathrm{pr}}(=\gamma+\mathrm{i} \kappa) \Longrightarrow$ flavor instability
(Banerjee et al, 20II)

Multiangle Suppression

New Developments and Challenges

Moment Method

ISSAC 2014, La Jolla, July 2014

Neutrino Halo

(Cherry et al, 2012)

ISSAC 2014, La Jolla, July 2014

Neutrino Halo

(Cherry et al, 2012)

Spontaneous Symmetry Breaking?

- A symmetry in the EoM does not guarantee that its solution(s) will also be symmetric.
- Even if the system may be approximately symmetric initially, a non-symmetric mode may quickly dominate if it is unstable.
- Numerical calculations suggest that supernova neutrino oscillations may not be axially symmetric even in the (I+2)D model. [Raffel et al, 2013; Mirizi, 2013]

$(I+3) D$

previous assumptions + Spherical symmetry about the center (Consistency?)

Homogeneous Gas Again

$$
1-\mathbf{p} \cdot \mathbf{p}^{\prime}=4 \pi\left[Y_{0,0}(\mathbf{p}) Y_{0,0}^{*}\left(\mathbf{p}^{\prime}\right)-\frac{1}{3} \sum_{m=0, \pm 1} Y_{1, m}(\mathbf{p}) Y_{1, m}^{*}\left(\mathbf{p}^{\prime}\right)\right]
$$

- Multipole modes are decoupled in the linear Regime
- $l=0$: $\mu_{\text {eff }}=\mu$, unstable in IH
- $l=\mathrm{I}: \mu_{\text {eff }}=-\mu / 3$ unstable in NH
- $l>\mid$: $\mu_{\text {eff }}=0$, always stable

Inverted Hierarchy

Normal Hierarchy

Implications for SN v

- Collective oscillations can occur in either mass hierarchy.
- Oscillations can occur deeper in the NH case than the IH case.
- The angle-dependent modes break the axial symmetry and the spherical symmetry -- new computing paradigm is needed.

Summary

- Neutrinos offer a unique and direct probe into the center of stars, including supernovae.
- Neutrinos are essential to supernova dynamics and nucleosynthesis.
- Collective neutrino oscillations - a collective quantum phenomenon on the scale of $10 \sim 100 \mathrm{~km}$?

How do you want do your calculations?

