Collective Neutrino Oscillations

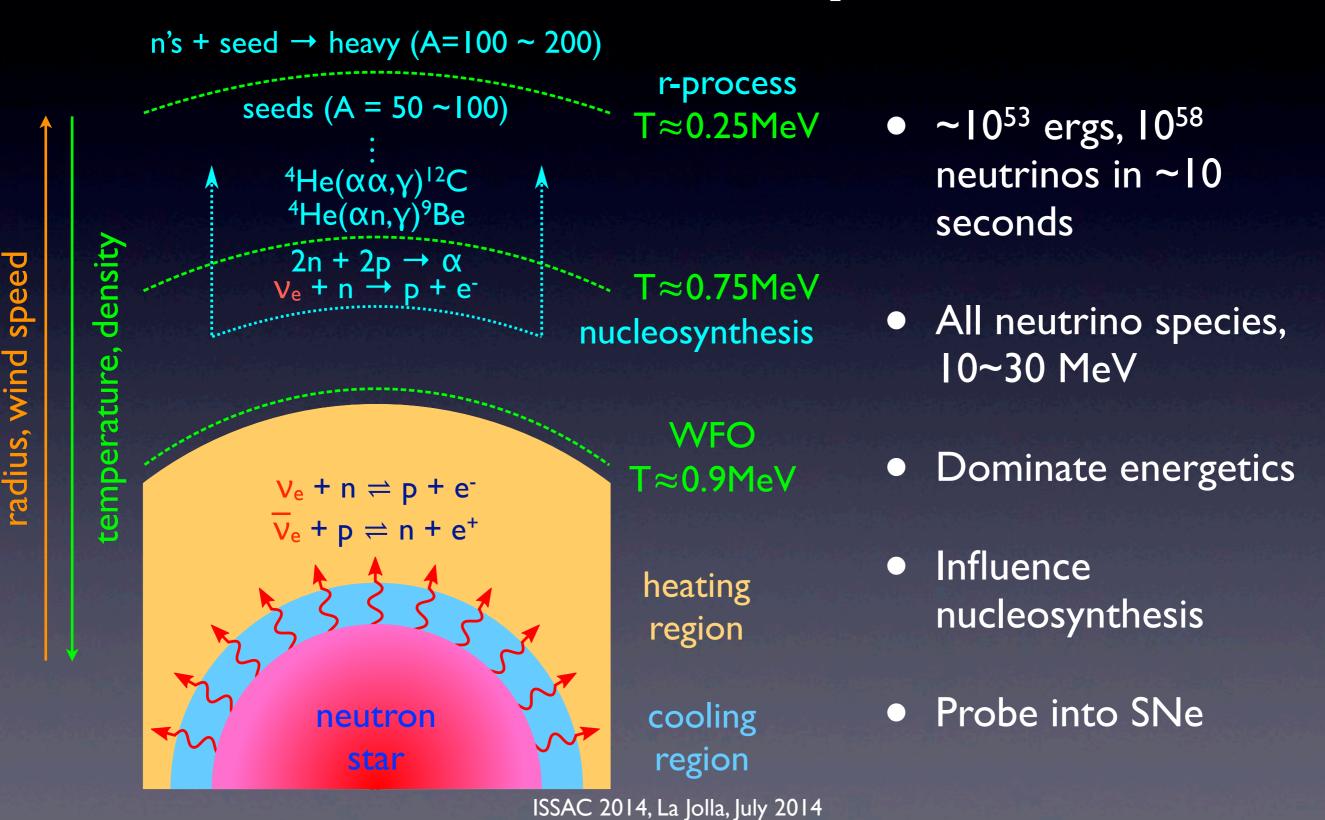
Huaiyu Duan

International Summer School on AstroComputing 2014 Neutrino & Nuclear Astrophysics

Outline

Introduction & overview
Understandings & insights
New developments & challenges

Neutrinos in Supernovae



 $i\frac{\mathrm{d}}{\mathrm{d}\lambda}|\psi_{\nu,\mathbf{p}}\rangle = \hat{H}|\psi_{\nu,\mathbf{p}}\rangle$

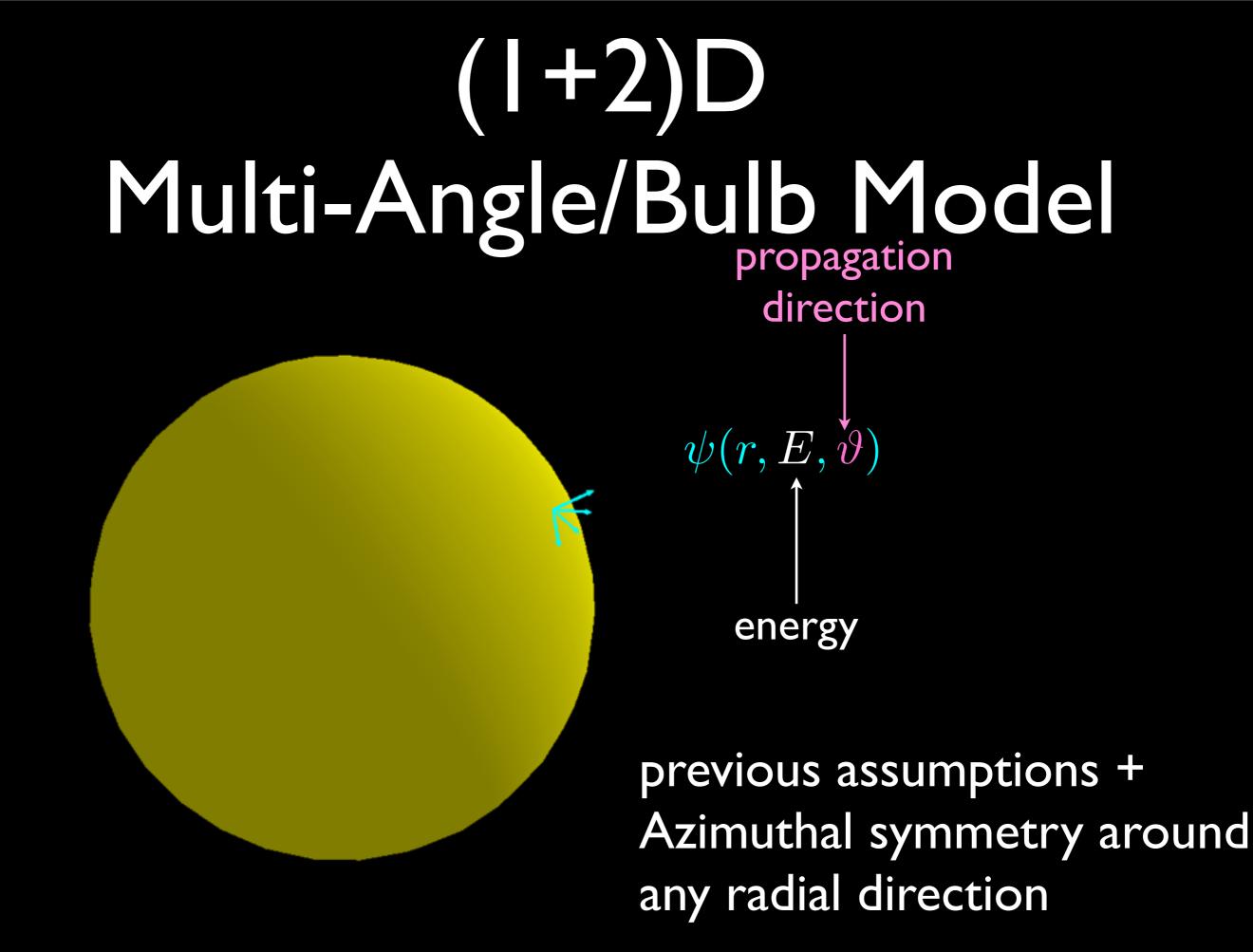
 $\mathsf{H} = \frac{\mathsf{M}^2}{2E} + \sqrt{2}G_{\mathrm{F}}\operatorname{diag}[\mathbf{n}_e, 0, 0] + \mathsf{H}_{\nu\nu}$

– neutrinosphere

Vk

ISSAC 2014, La Jolla, July 2014

٧p



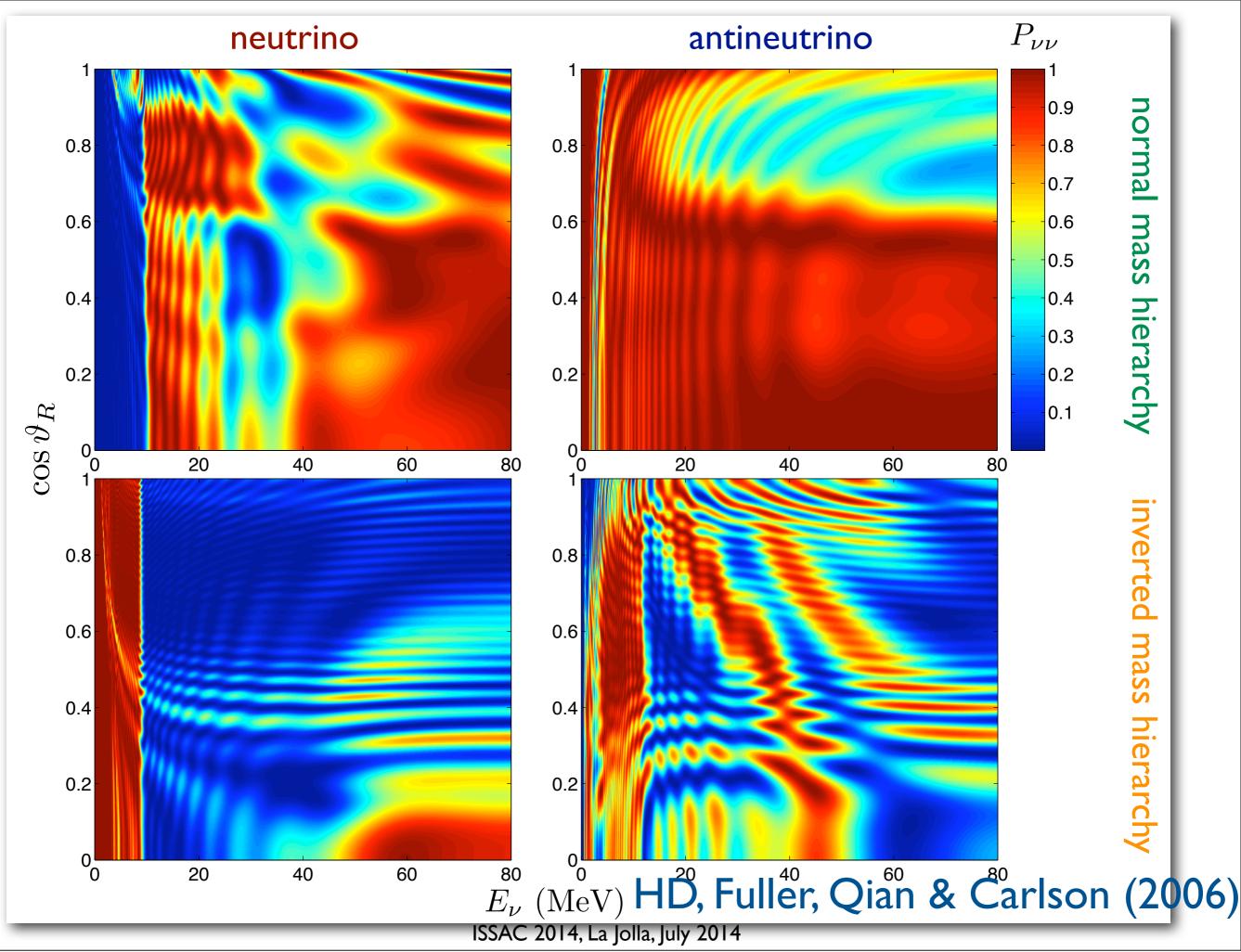
(I+I)D Single-Angle

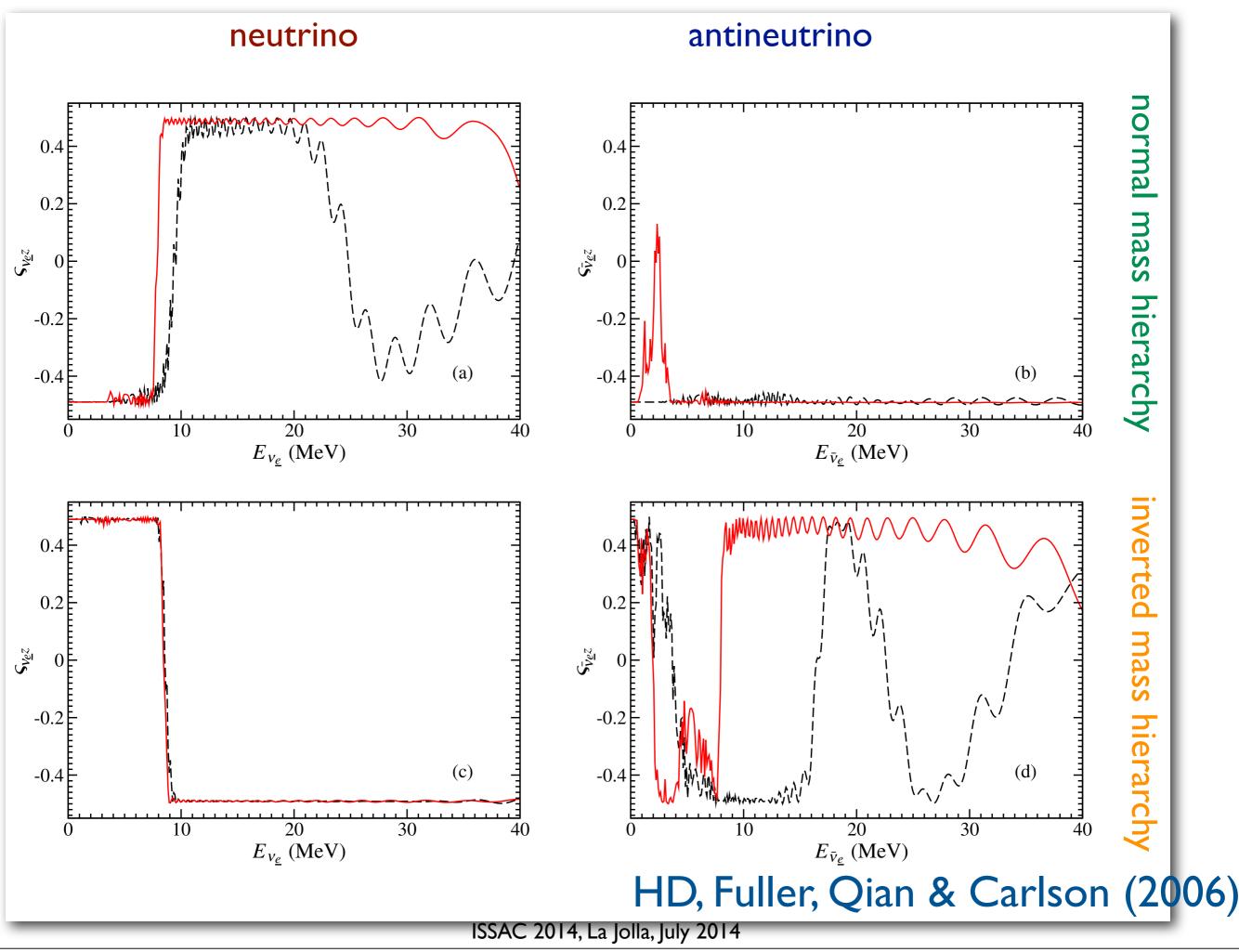
Equivalent to an expanding homogeneous neutrino gas

energy

 $\psi(r, E)$

previous assumptions + Trajectory independent neutrino flavor evolution





Neutrino Self-Coupling

$$i\frac{\mathrm{d}}{\mathrm{d}\lambda}|\psi_{\nu,\mathbf{p}}\rangle = \hat{H}|\psi_{\nu,\mathbf{p}}\rangle$$

mass squared matrix $H = \frac{M^2}{2E} + \sqrt{2}G_F \operatorname{diag}[n_e, 0, 0] + H_{\nu\nu}$ neutrino energy $\nu-\nu$ forward scattering

(self-coupling)

 $\mathsf{H}_{\nu\nu} = \sqrt{2}G_{\mathrm{F}} \int \mathrm{d}\mathbf{p}' (1 - \hat{\mathbf{p}} \cdot \hat{\mathbf{p}}')(\rho_{\mathbf{p}'} - \bar{\rho}_{\mathbf{p}'}^*)$

Tools & Toy Models

Vacuum Oscillations

neutrinos are generated/detected in flavor states

neutrino mass eigenstates \neq neutrino flavor states

$$|\nu_1\rangle = \cos\theta_{\rm v}|\nu_e\rangle + \sin\theta_{\rm v}|\nu_{\mu}\rangle \quad \text{with mass } m_1$$
$$|\nu_2\rangle = -\sin\theta_{\rm v}|\nu_e\rangle + \cos\theta_{\rm v}|\nu_{\mu}\rangle \quad \text{with mass } m_2$$

vacuum mixing angle

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}x}\begin{bmatrix}\langle\nu_e|\psi_\nu\rangle\\\langle\nu_\mu|\psi_\nu\rangle\end{bmatrix} = \frac{1}{2}\begin{bmatrix}-\omega\cos 2\theta_{\mathrm{v}} & \omega\sin 2\theta_{\mathrm{v}}\\\omega\sin 2\theta_{\mathrm{v}} & \omega\cos 2\theta_{\mathrm{v}}\end{bmatrix}\begin{bmatrix}\langle\nu_e|\psi_\nu\rangle\\\langle\nu_\mu|\psi_\nu\rangle\end{bmatrix}$$
$$\mathbf{1}$$
 vac. osc. freq. $\omega = \frac{\delta m^2}{2E_\nu}$
$$\delta m^2 = m_2^2 - m_1^2$$

Neutrino Flavor Isospin

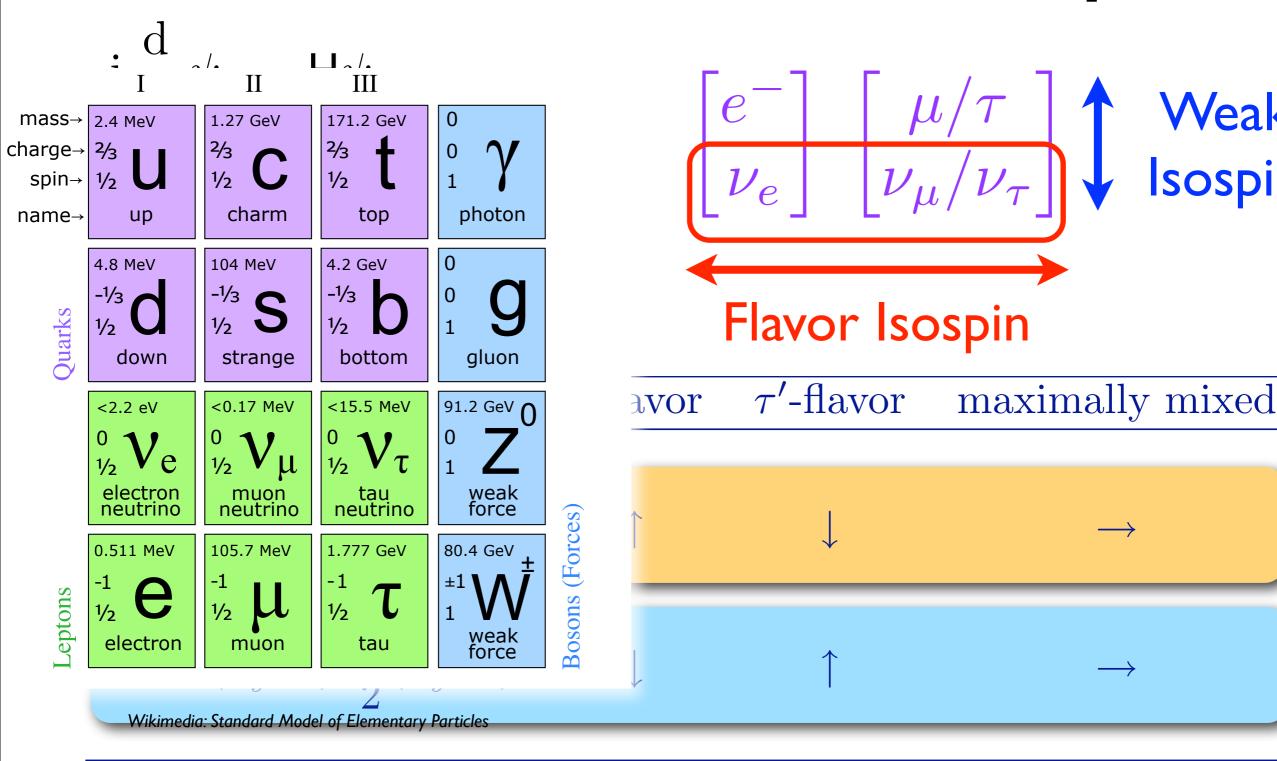
Two-component system

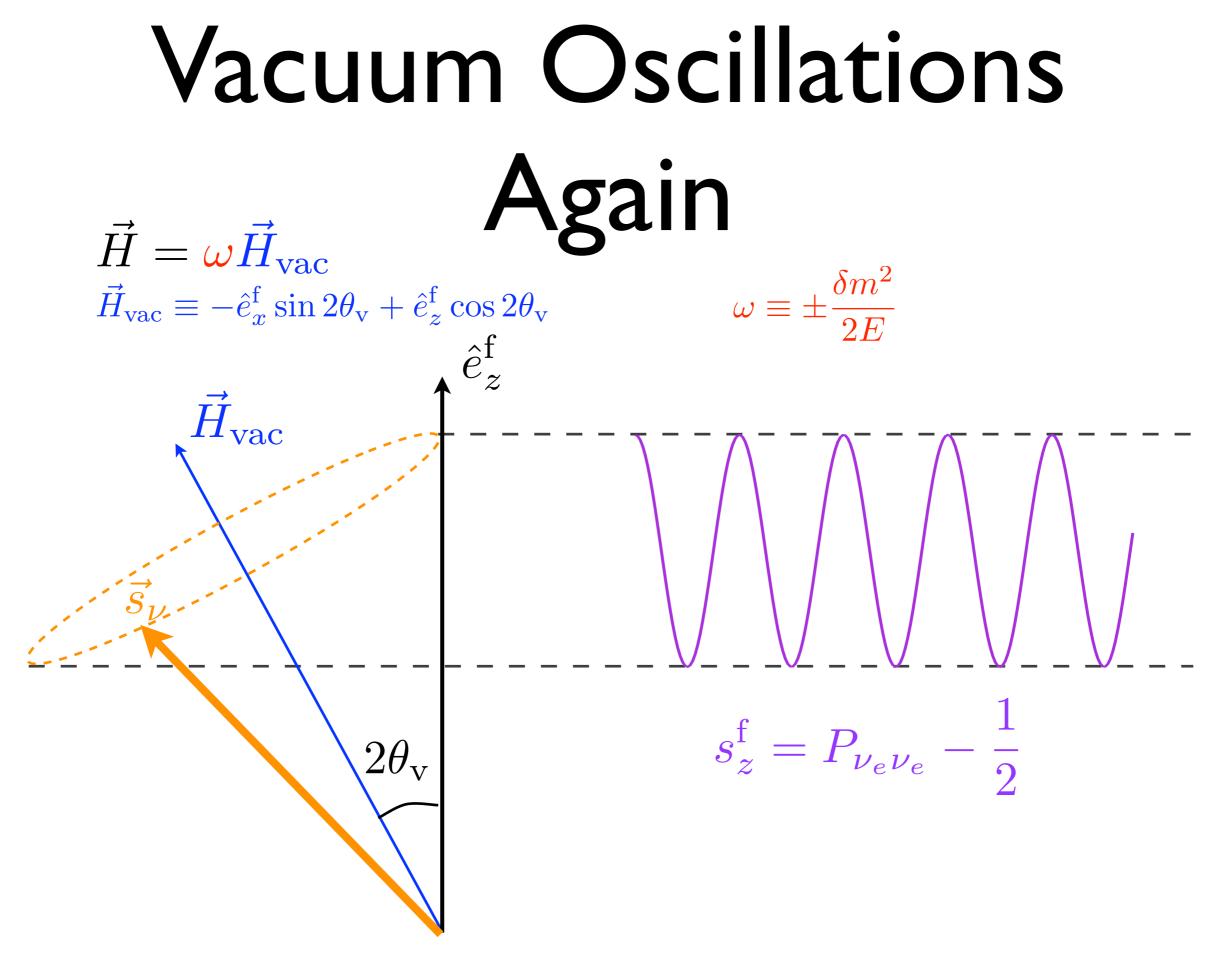
2×2 Hermitian matrix $\mathbf{H} = H_0 \mathbb{1} + \mathbf{H} \cdot \boldsymbol{\sigma}$

Neutrino Flavor Isospin

Weak

Isospin

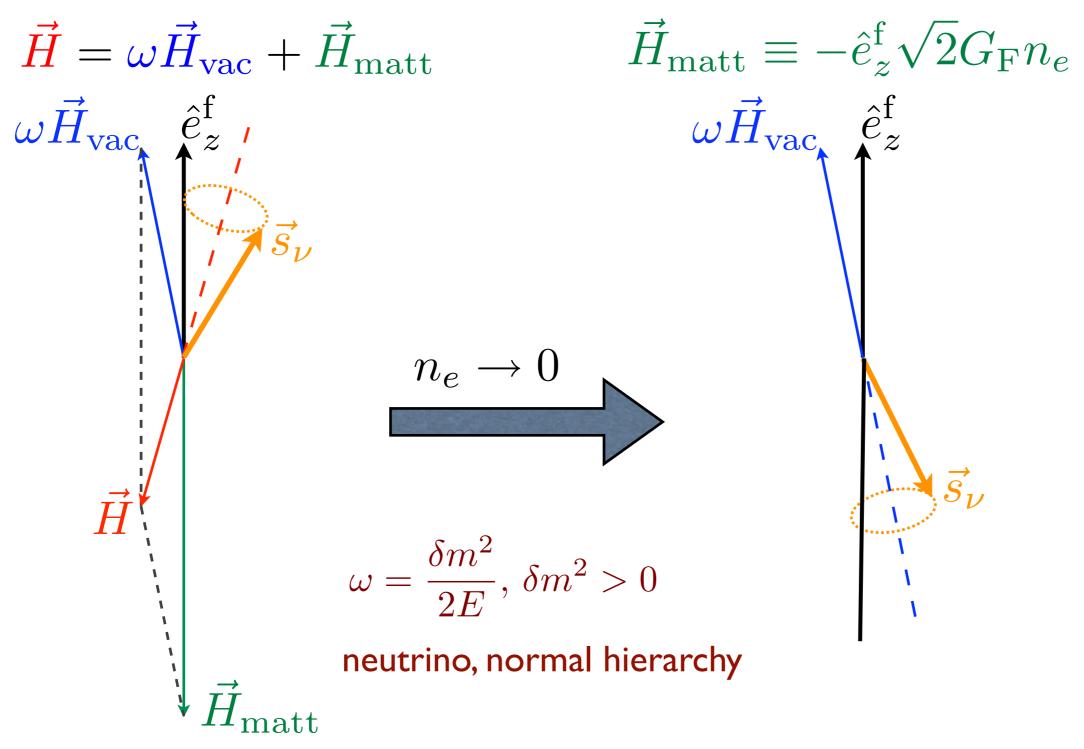




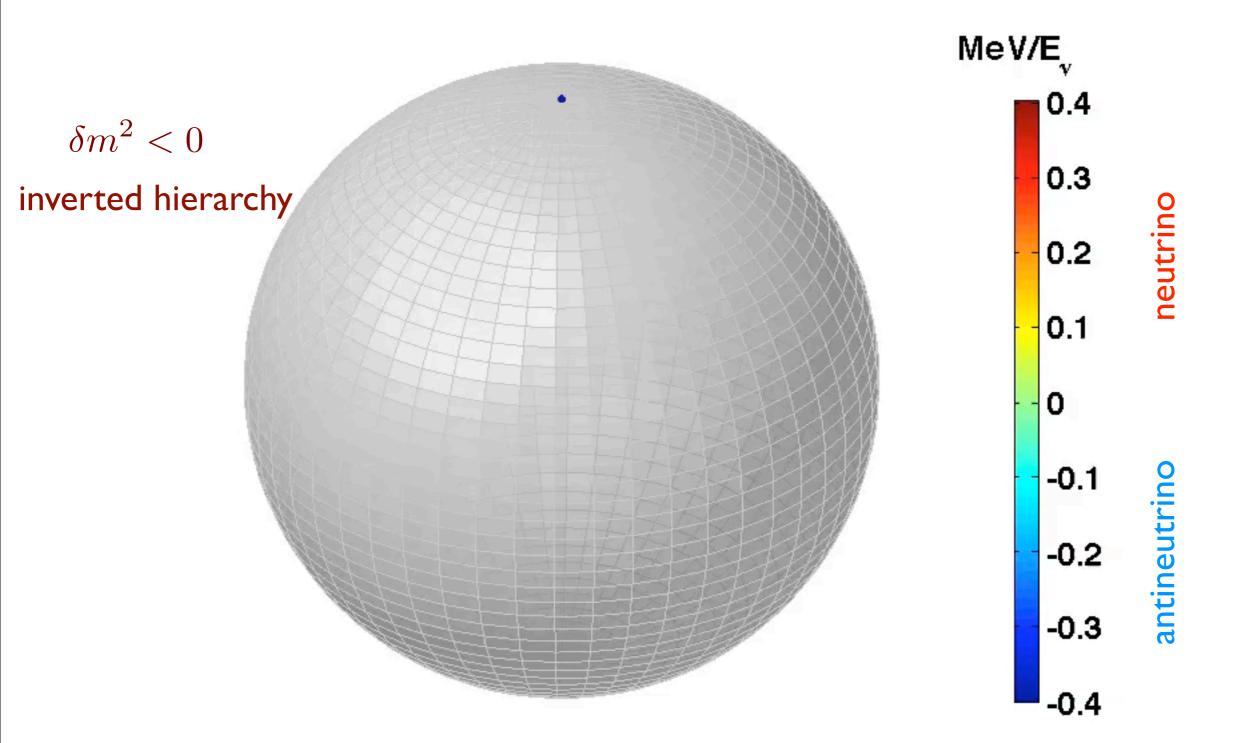
MSW Effect

electron number density $i\frac{\mathrm{d}}{\mathrm{d}x}\begin{bmatrix} \langle \nu_e | \psi_\nu \rangle \\ \langle \nu_\mu | \psi_\nu \rangle \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 2\sqrt{2}G_{\mathrm{F}}n_e - \omega\cos 2\theta_{\mathrm{v}} & \omega\sin 2\theta_{\mathrm{v}} \\ \omega\sin 2\theta_{\mathrm{v}} & \omega\cos 2\theta_{\mathrm{v}} \end{bmatrix}\begin{bmatrix} \langle \nu_e | \psi_\nu \rangle \\ \langle \nu_\mu | \psi_\nu \rangle \end{bmatrix}$ \mathbf{L} vac. osc. freq. $\omega = \frac{\delta m^2}{2E_{\nu}}$ $|
u_{
m H}
angle \sim |
u_e
angle$ $ert
u_{
m H}
angle = ert
u_2
angle$ $ert
u_{
m L}
angle = ert
u_1
angle$ $|
u_{
m L}
angle \sim |
u_{\mu}
angle$ MSW Res. Cond.: $\frac{\delta m^2}{2E_{\nu}} \simeq \sqrt{2}G_{\rm F}n_e$ n_e

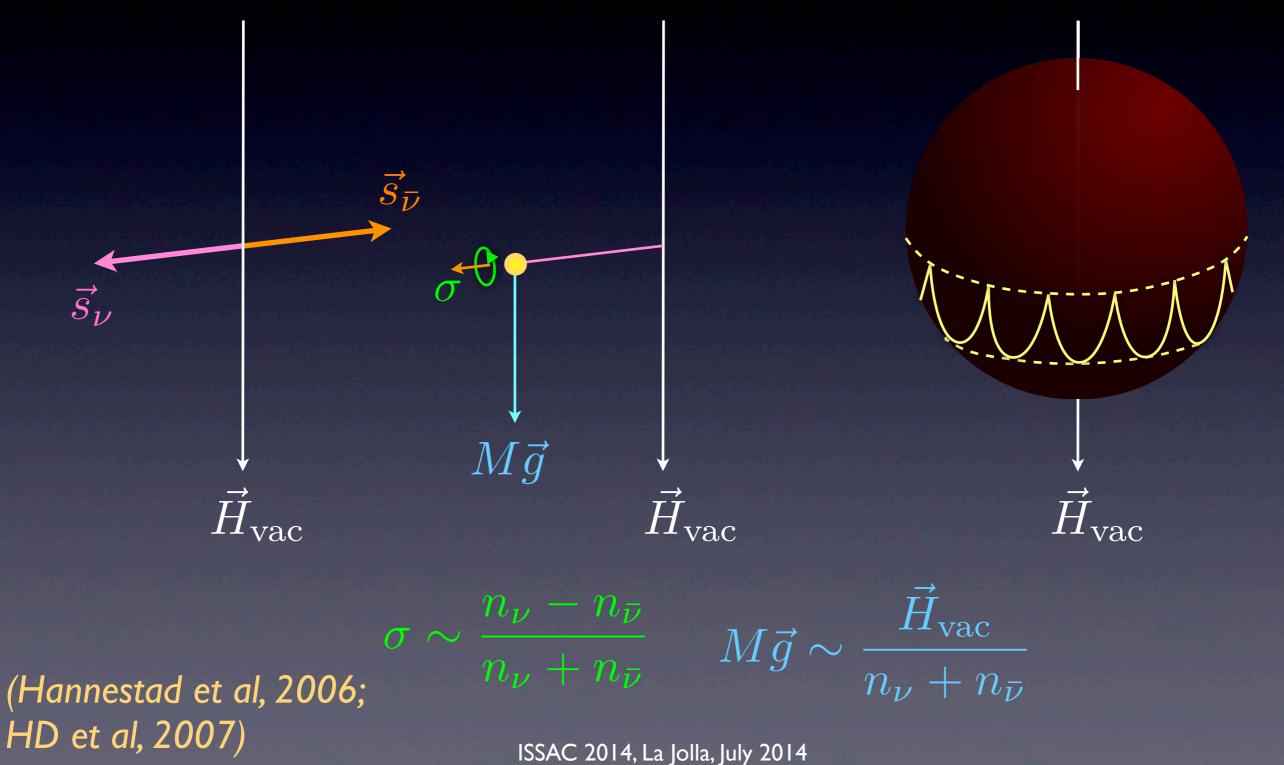
MSW Again



MSW Mechanism

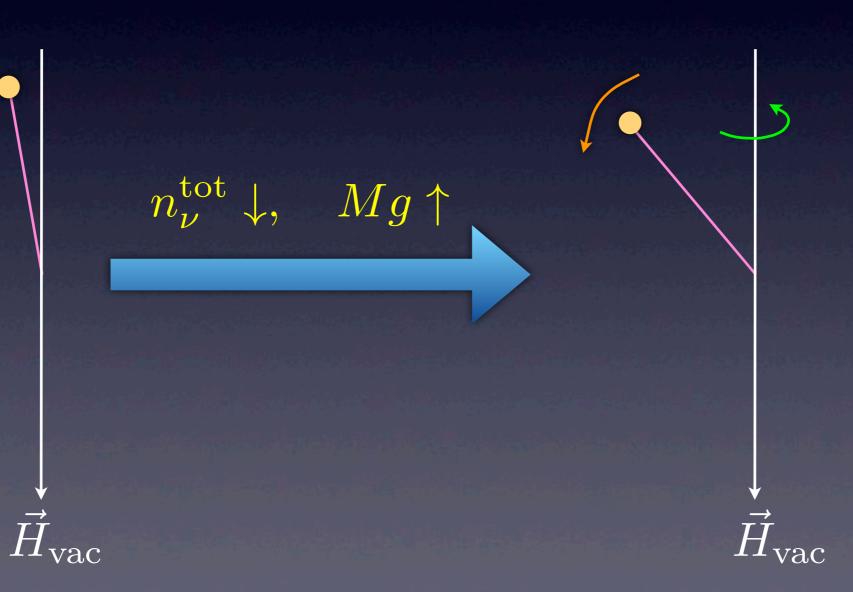


Bipolar System Mono-energetic ν - $\bar{\nu}$ gas

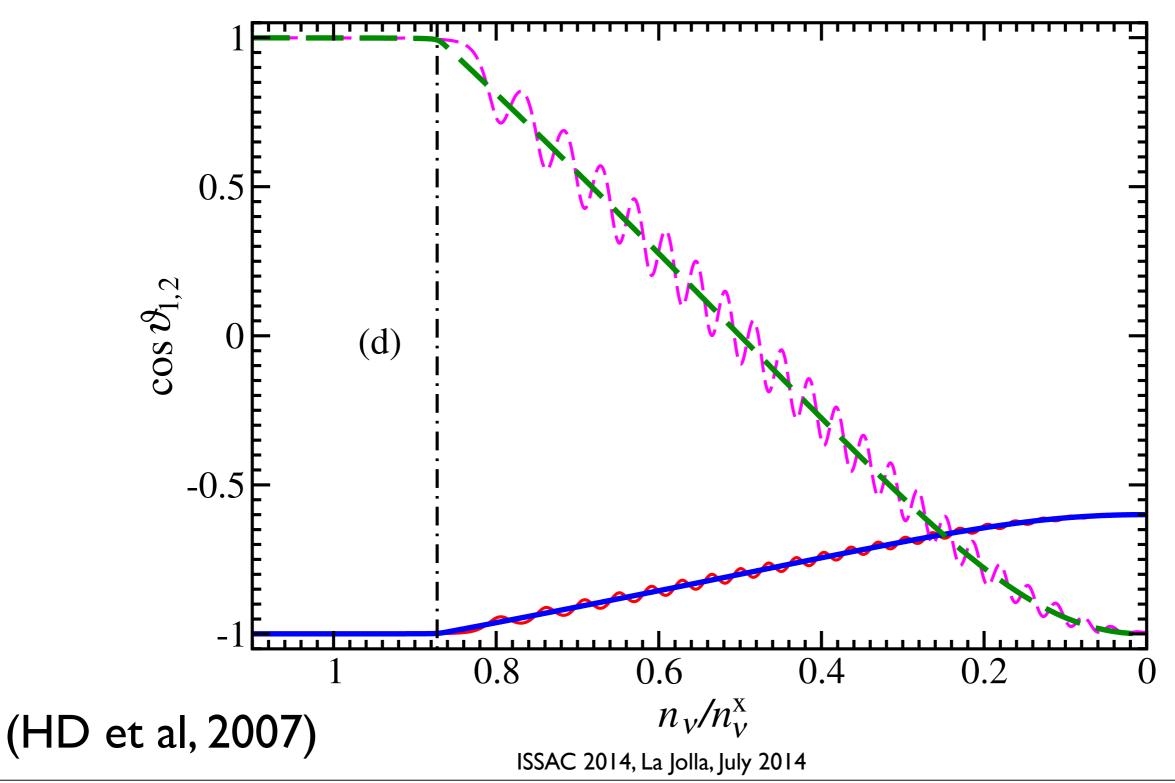


Bipolar System

Inverted Mass Hierarchy

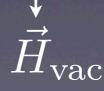


Bipolar System



Bipolar System

Normal Mass Hierarchy

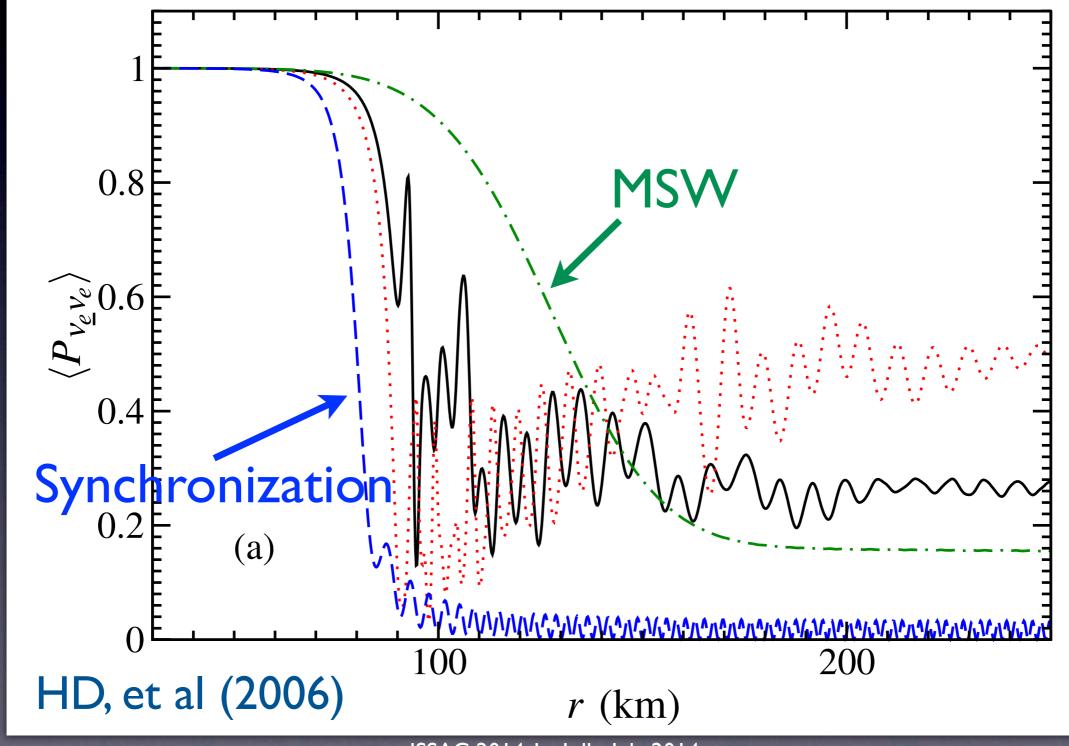


ISSAC 2014, La Jolla, July 2014

Friday, July 25, 14

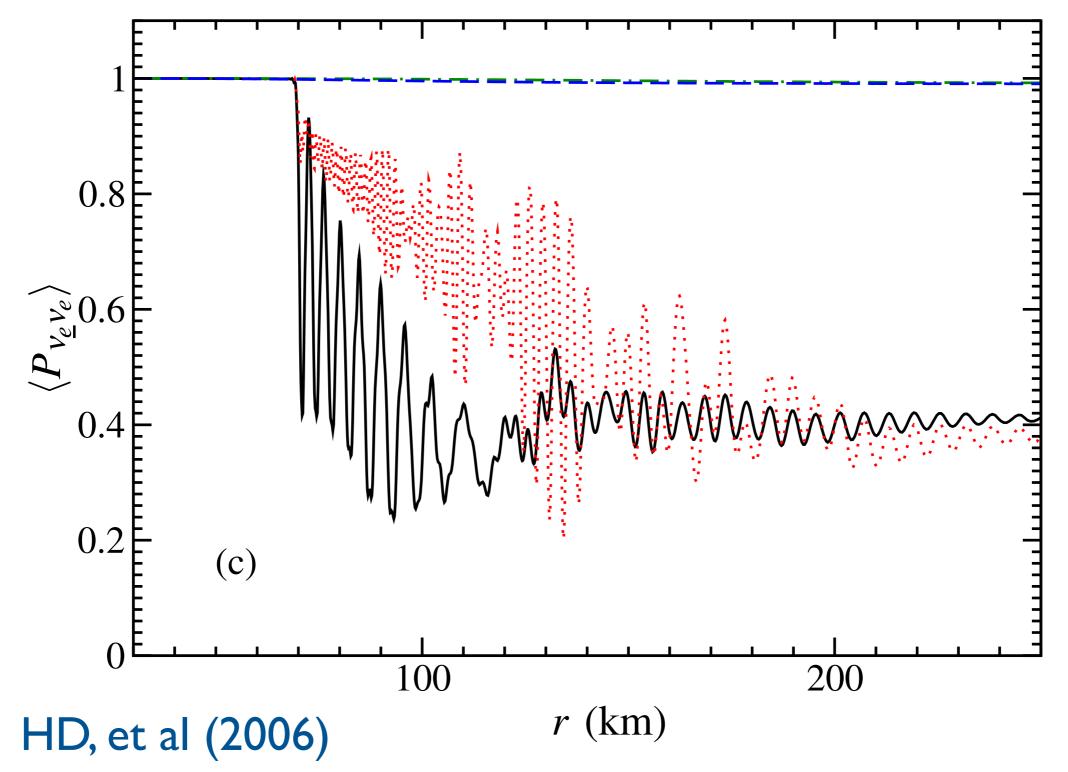
 $ec{H}_{
m vac}$

Comparison



ISSAC 2014, La Jolla, July 2014

Comparison



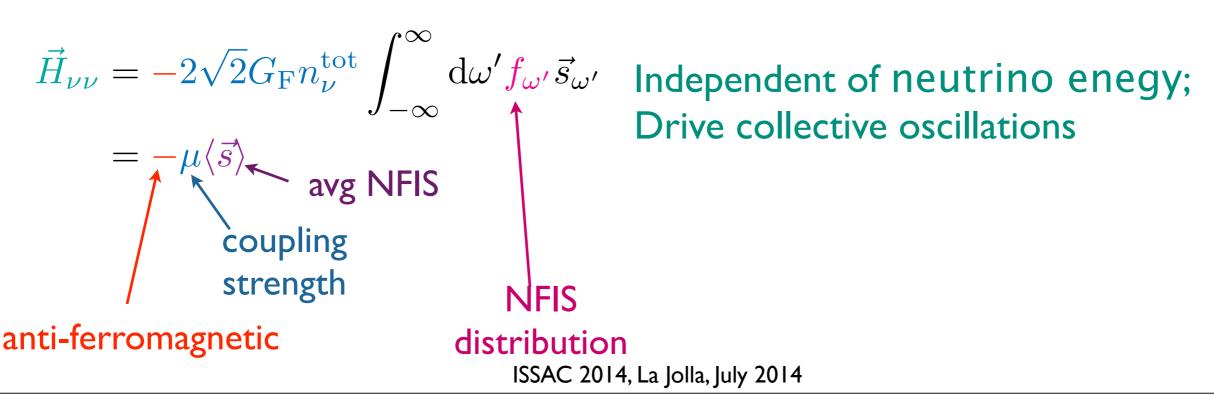
ISSAC 2014, La Jolla, July 2014

Homogeneous Gas $\frac{\mathrm{d}}{\mathrm{d}r}\vec{s}_{\omega} = \vec{s}_{\omega} \times \vec{H}_{\omega}$

$$\vec{H}_{\omega} = \vec{H}_{\rm vac} + \vec{\mu}_{\rm matt} + \vec{H}_{\nu\nu}$$

 $\vec{H}_{vac} = \omega \hat{e}_z^v$ Depend on neutrino energy; disrupt collective oscillations

 $\vec{H}_{\text{matt}} = -\sqrt{2}G_{\text{F}}n_{e}\hat{e}_{z}^{\text{f}}$ Independent of neutrino energy; "Ignored" for collective oscillations



Collective Oscillations

rotational symmetry of EoM

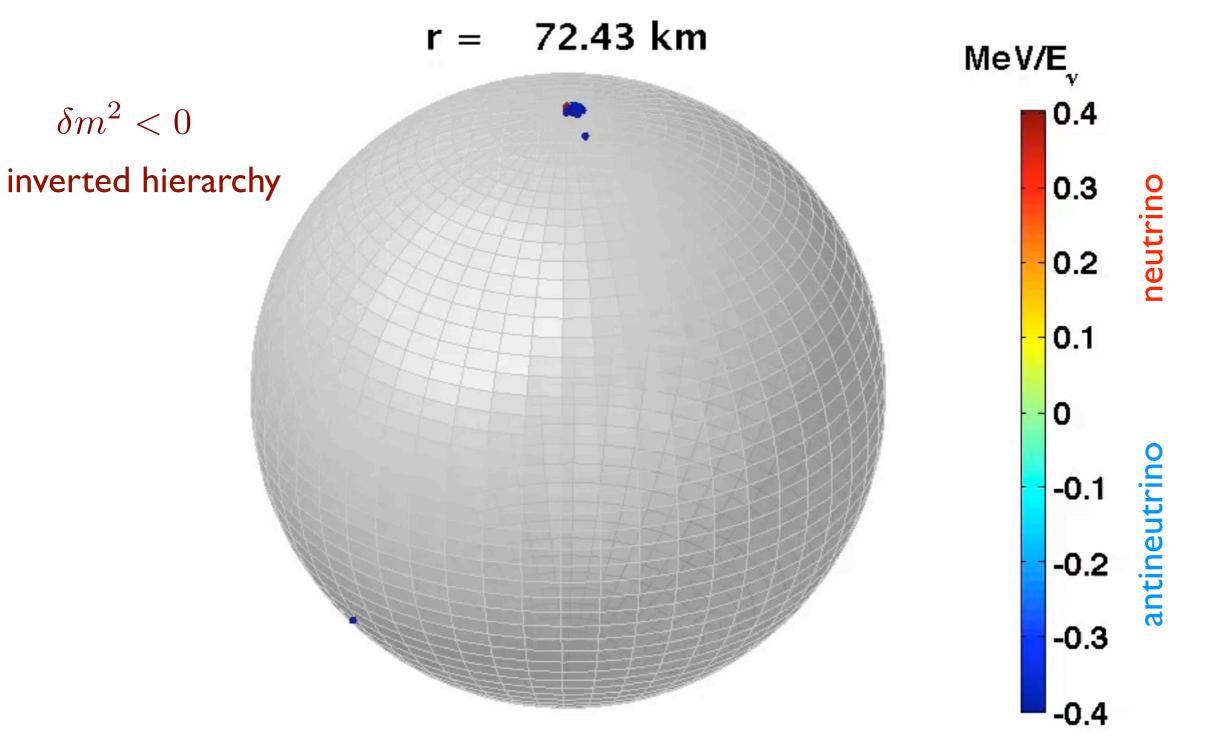
collective precession of flavor isospins

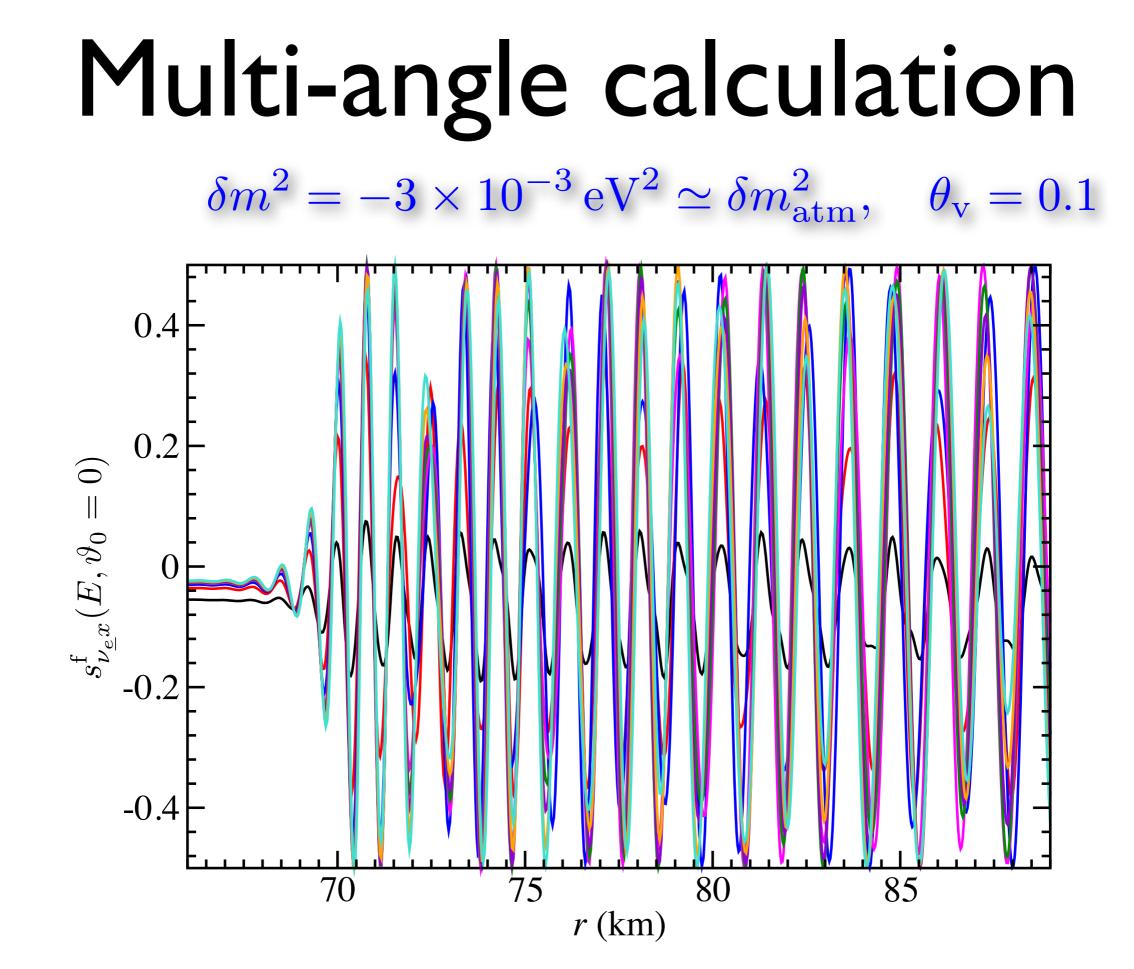
rotating "magnetic field"

magnetic spin resonance

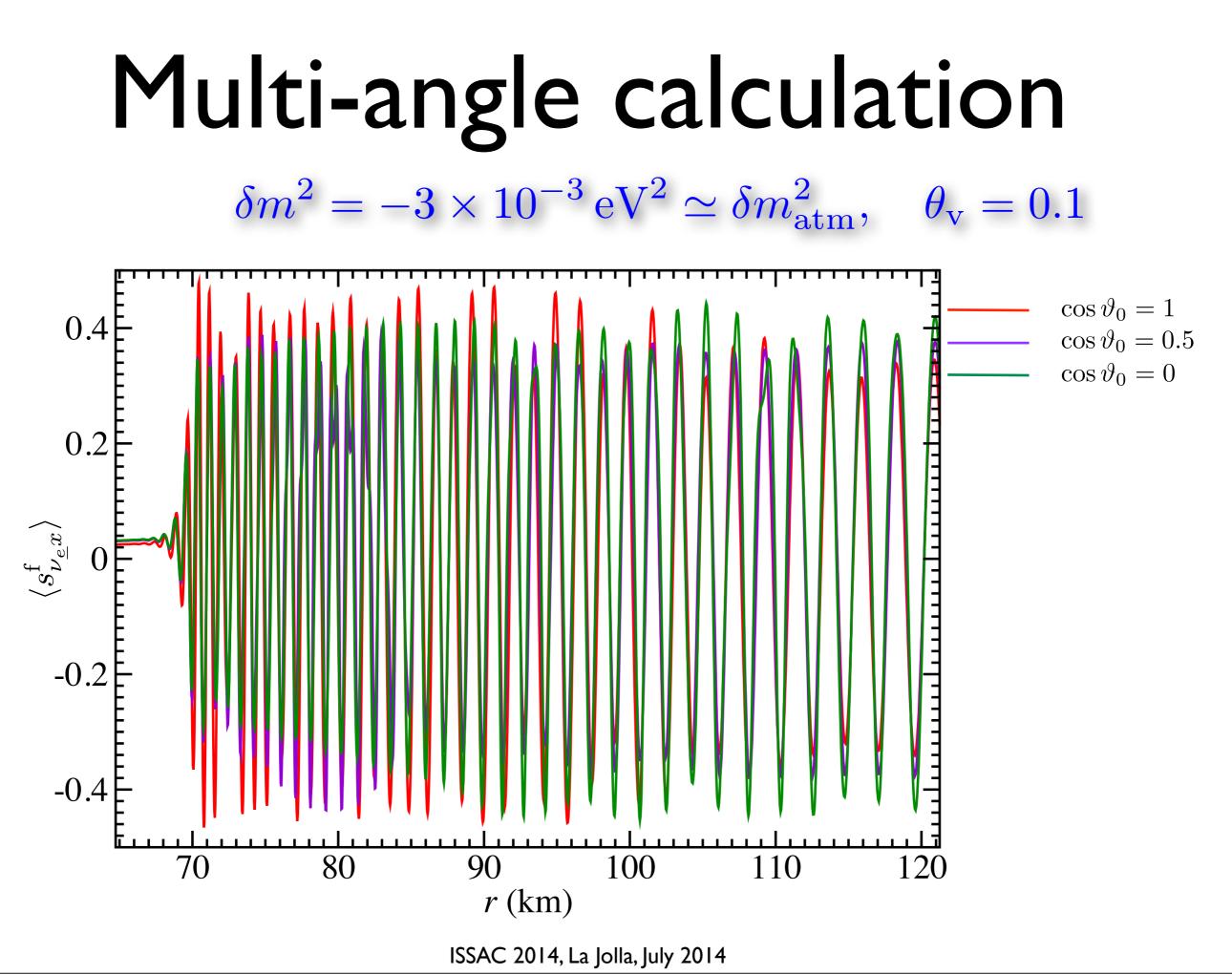
new flavor transformation mechanism

Collective Oscillations

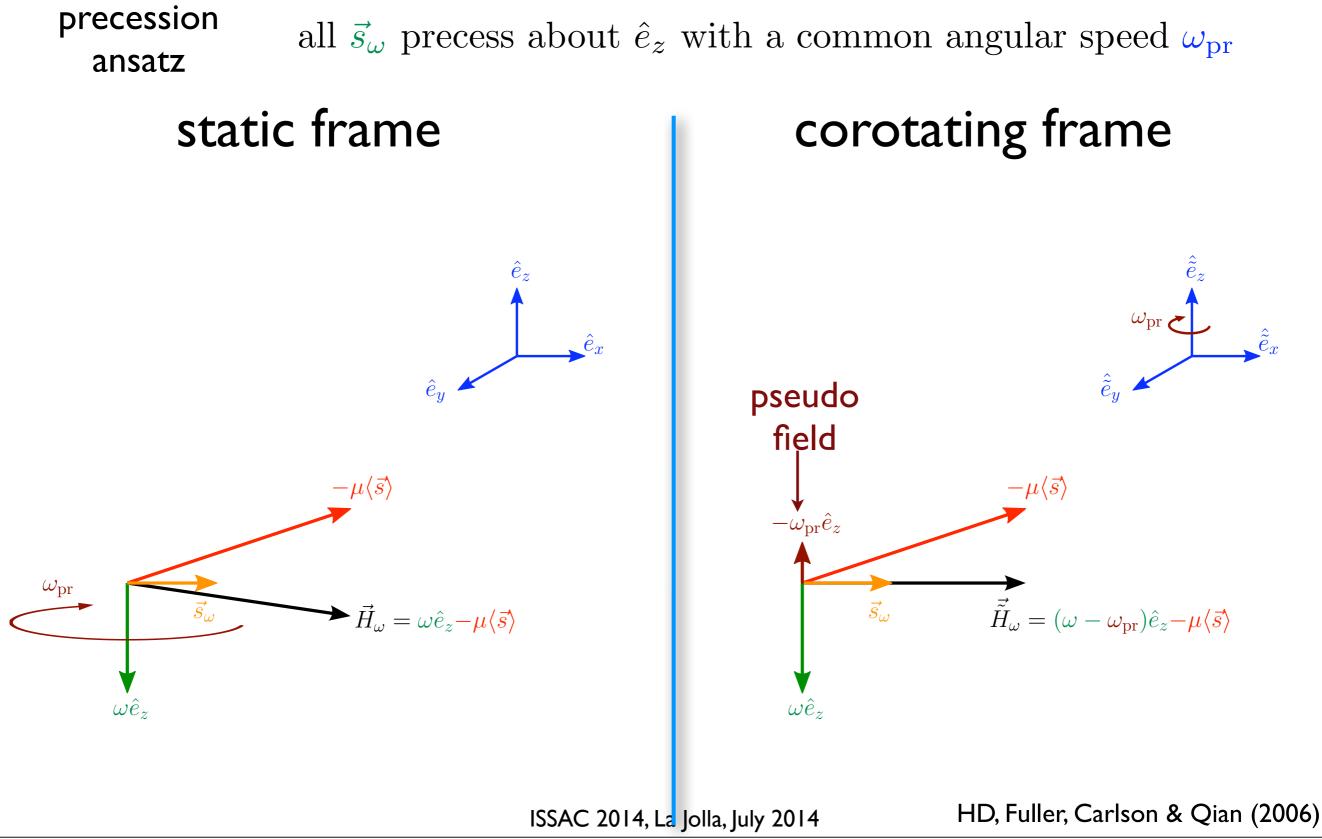


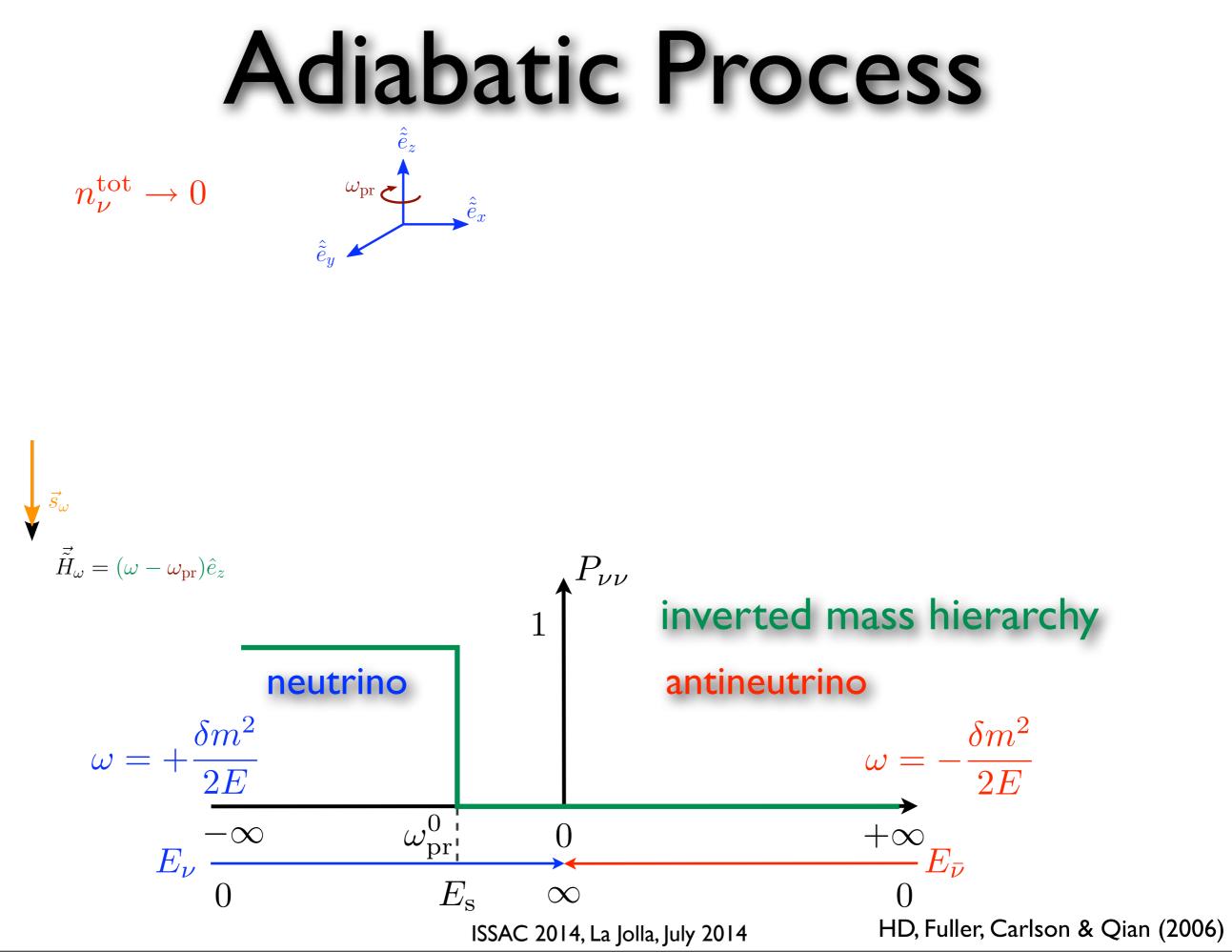


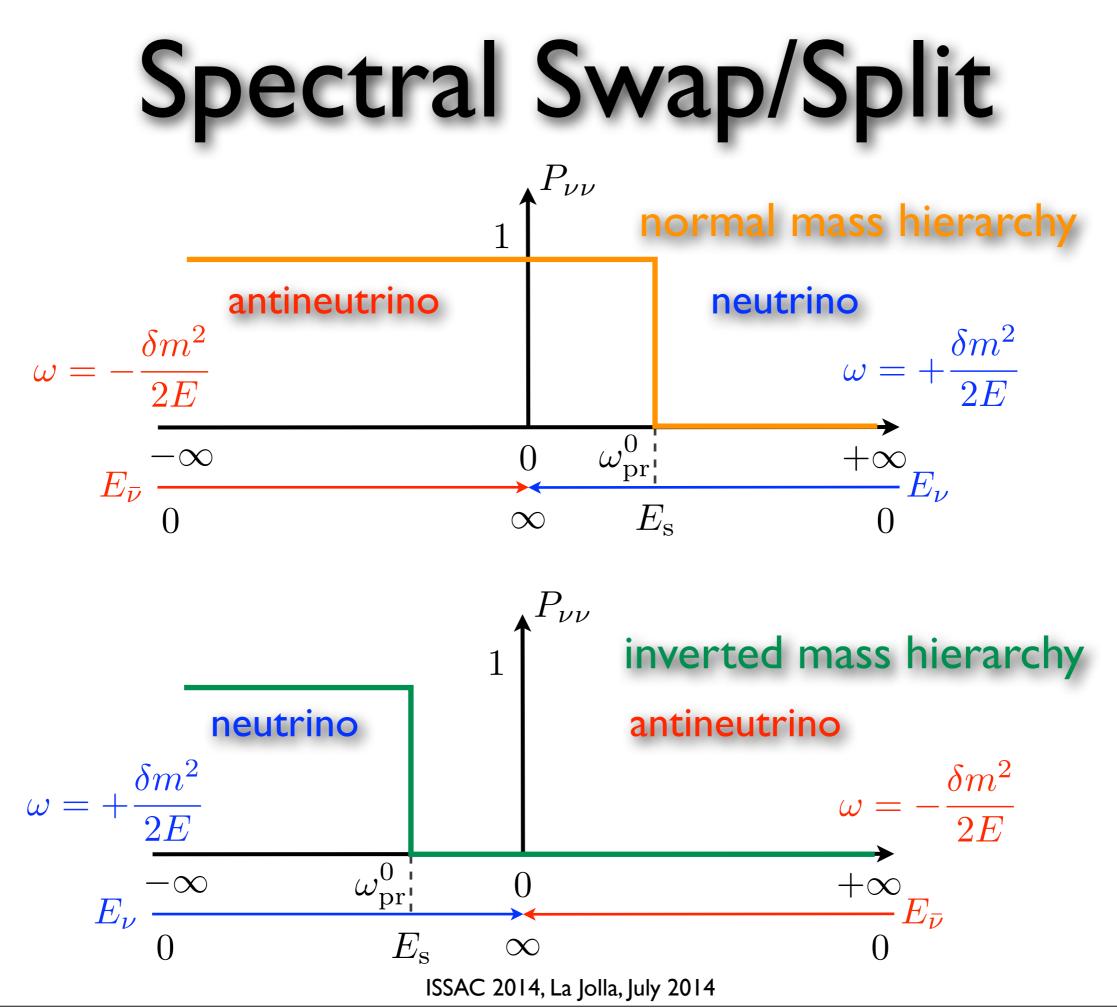
ISSAC 2014, La Jolla, July 2014

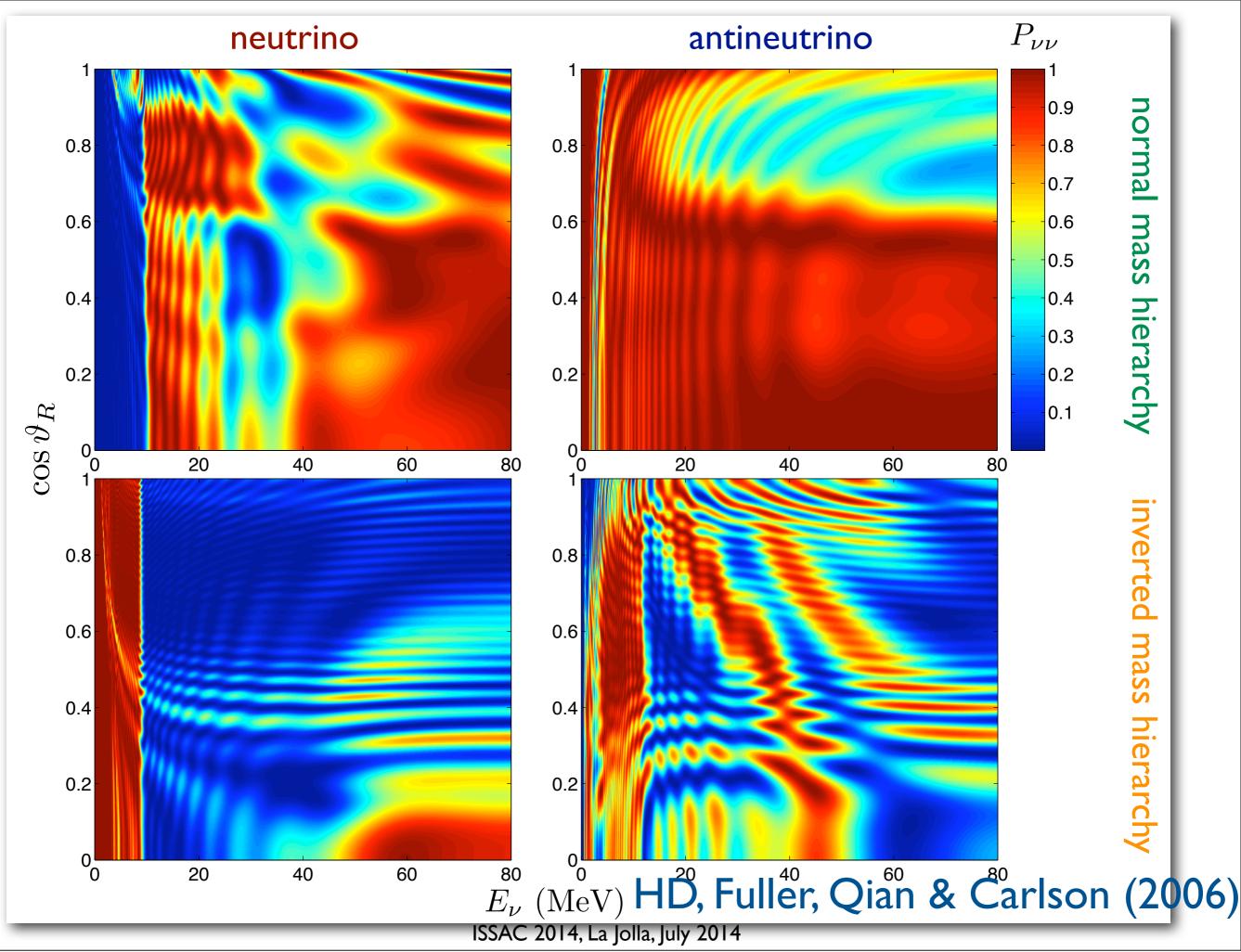


Precession Mode









Linear Stability Analysis

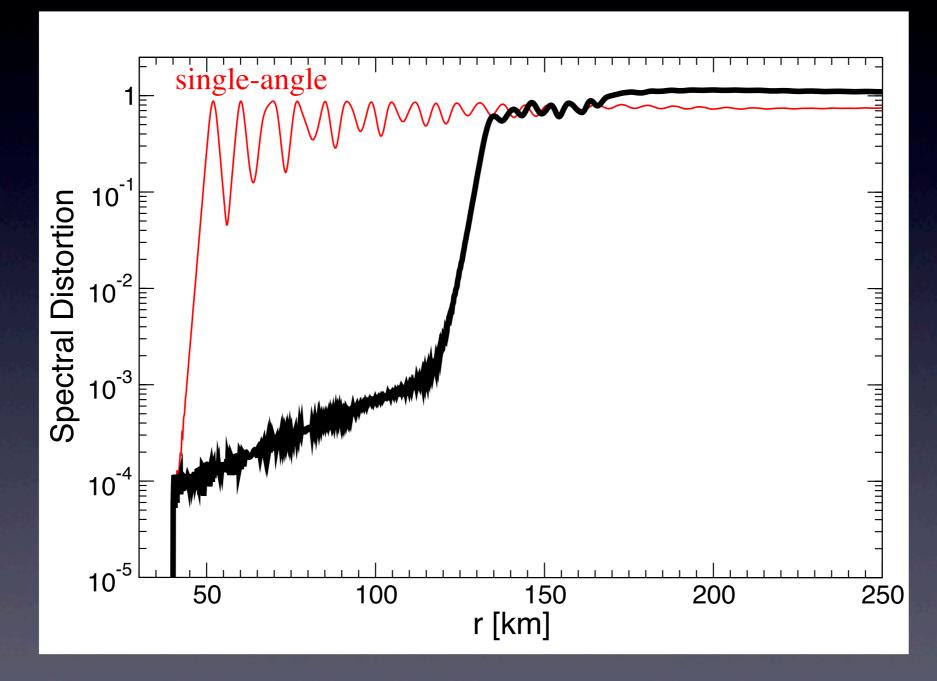
$$\vec{s}_{\omega} \longrightarrow \rho_{\omega} = \begin{bmatrix} s_z & s_x - is_y \\ s_x + is_y & -s_z \end{bmatrix}$$

 $|s_z| \approx 1, |s_x| \sim |s_y| \ll 1 \Longrightarrow$ Keep linear terms of $S = s_x - is_y$ $i\dot{S}_\omega \approx \omega S_\omega - \mu \int f_{\omega'} S_{\omega'} d\omega'$

Pure precession $\Longrightarrow S_{\omega} \propto e^{-i\omega_{\rm pr}t}$

Imaginary $\omega_{\rm pr} (= \gamma + i\kappa) \Longrightarrow$ flavor instability (Banerjee et al, 2011)

Multiangle Suppression

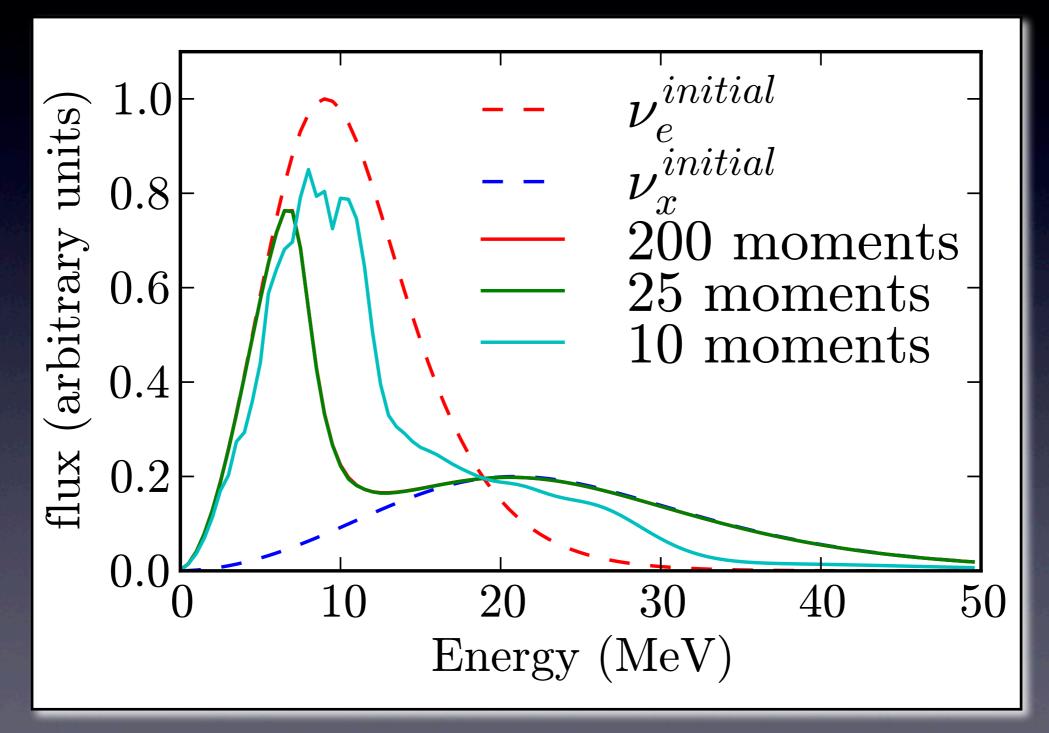


ISSAC 2014, La Jolla, July 2014

HD & Friedland (2010)

New Developments and Challenges

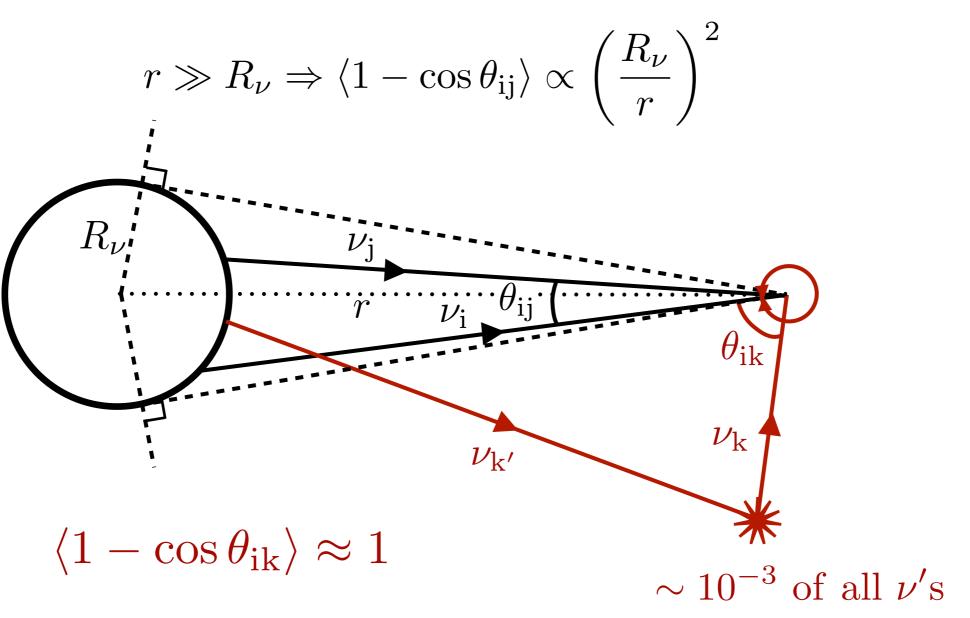
Moment Method



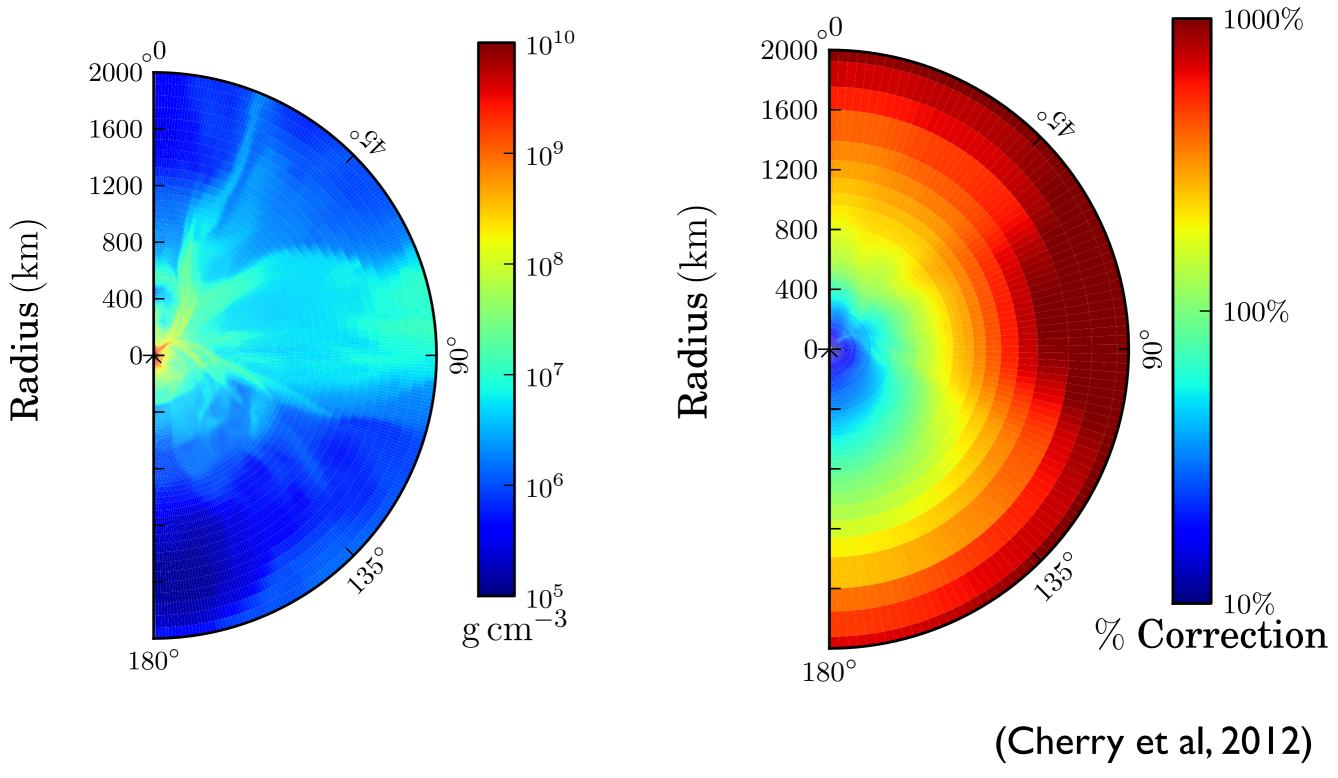
Shalgar & HD (in preparation)

Neutrino Halo

(Cherry et al, 2012)



Neutrino Halo



Summer School on Frontiers in Nuclear Astrophysics, Shanghai, May 2014

Spontaneous Symmetry Breaking?

- A symmetry in the EoM does not guarantee that its solution(s) will also be symmetric.
- Even if the system may be approximately symmetric initially, a non-symmetric mode may quickly dominate if it is unstable.
- Numerical calculations suggest that supernova neutrino oscillations may not be axially symmetric even in the (1+2)D model. [Raffelt et al, 2013; Mirizzi, 2013]

(I+3)D propagation direction

energy

 $\psi(r, E, \vartheta, \varphi)$

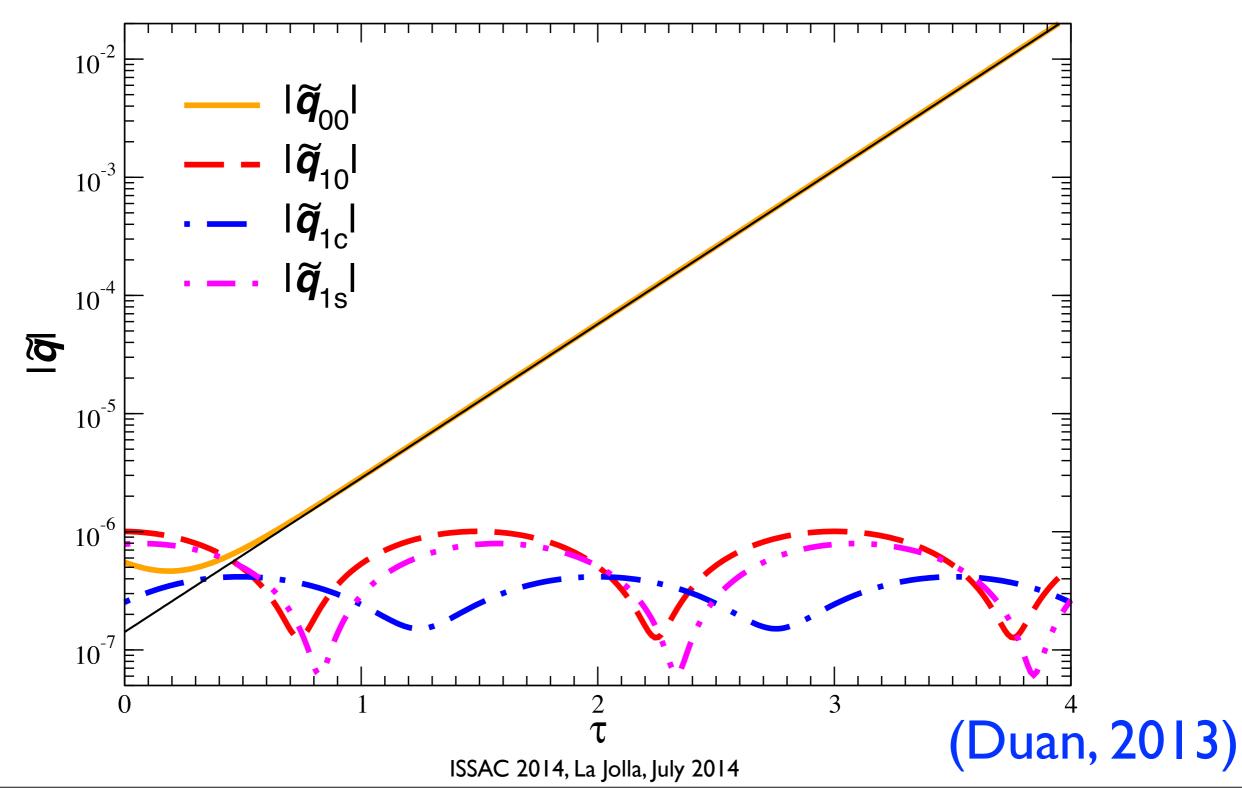
previous assumptions + Spherical symmetry about the center (Consistency?)

Homogeneous Gas Again

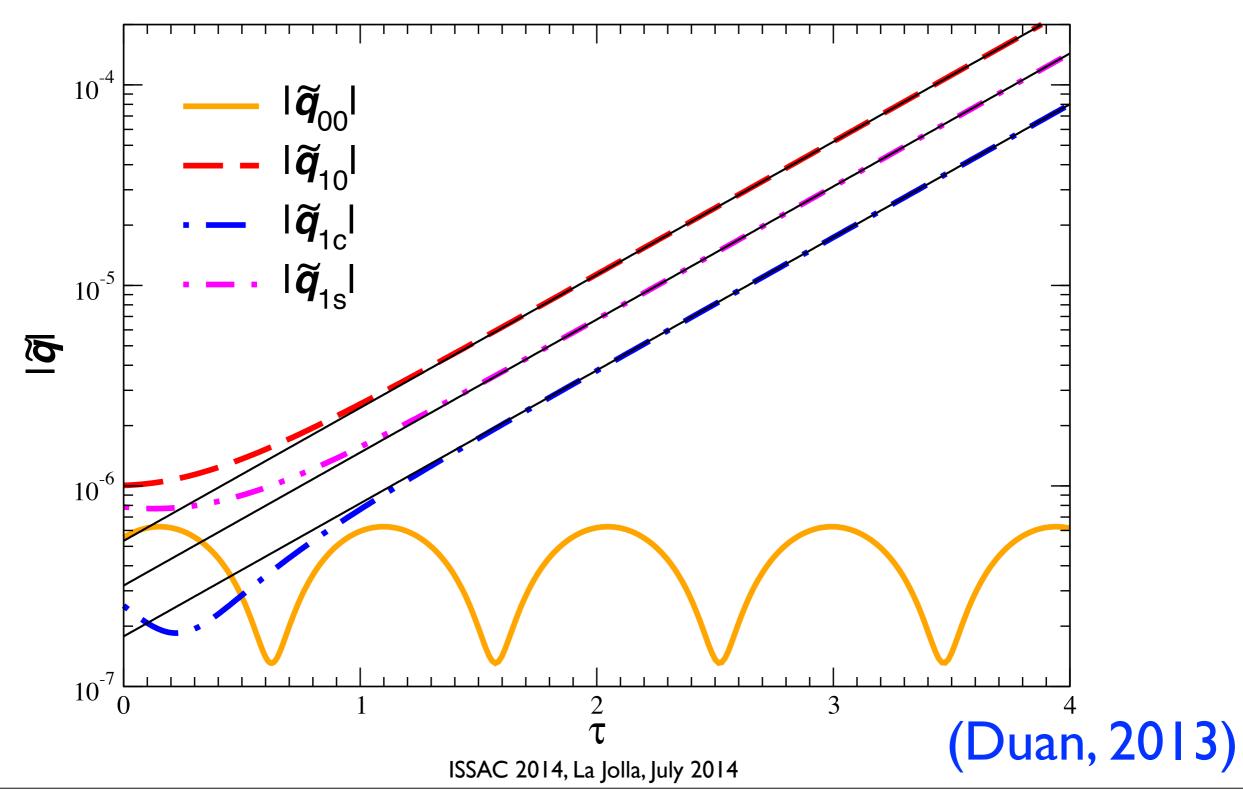
$$1 - \mathbf{p} \cdot \mathbf{p}' = 4\pi \left[Y_{0,0}(\mathbf{p}) Y_{0,0}^*(\mathbf{p}') - \frac{1}{3} \sum_{m=0,\pm 1} Y_{1,m}(\mathbf{p}) Y_{1,m}^*(\mathbf{p}') \right]$$

Multipole modes are decoupled in the linear Regime *l*=0: μ_{eff}= μ, unstable in IH *l*=1: μ_{eff}= -μ/3 unstable in NH *l*>1: μ_{eff}= 0, always stable

Inverted Hierarchy



Normal Hierarchy



Implications for SN V

- Collective oscillations can occur in either mass hierarchy.
- Oscillations can occur deeper in the NH case than the IH case.
- The angle-dependent modes break the axial symmetry and the spherical symmetry -- new computing paradigm is needed.

Summary

- Neutrinos offer a unique and direct probe into the center of stars, including supernovae.
- Neutrinos are essential to supernova dynamics and nucleosynthesis.
- Collective neutrino oscillations a collective quantum phenomenon on the scale of 10 ~100 km?

How do you want do your calculations?