Collective Neutrino Oscillations

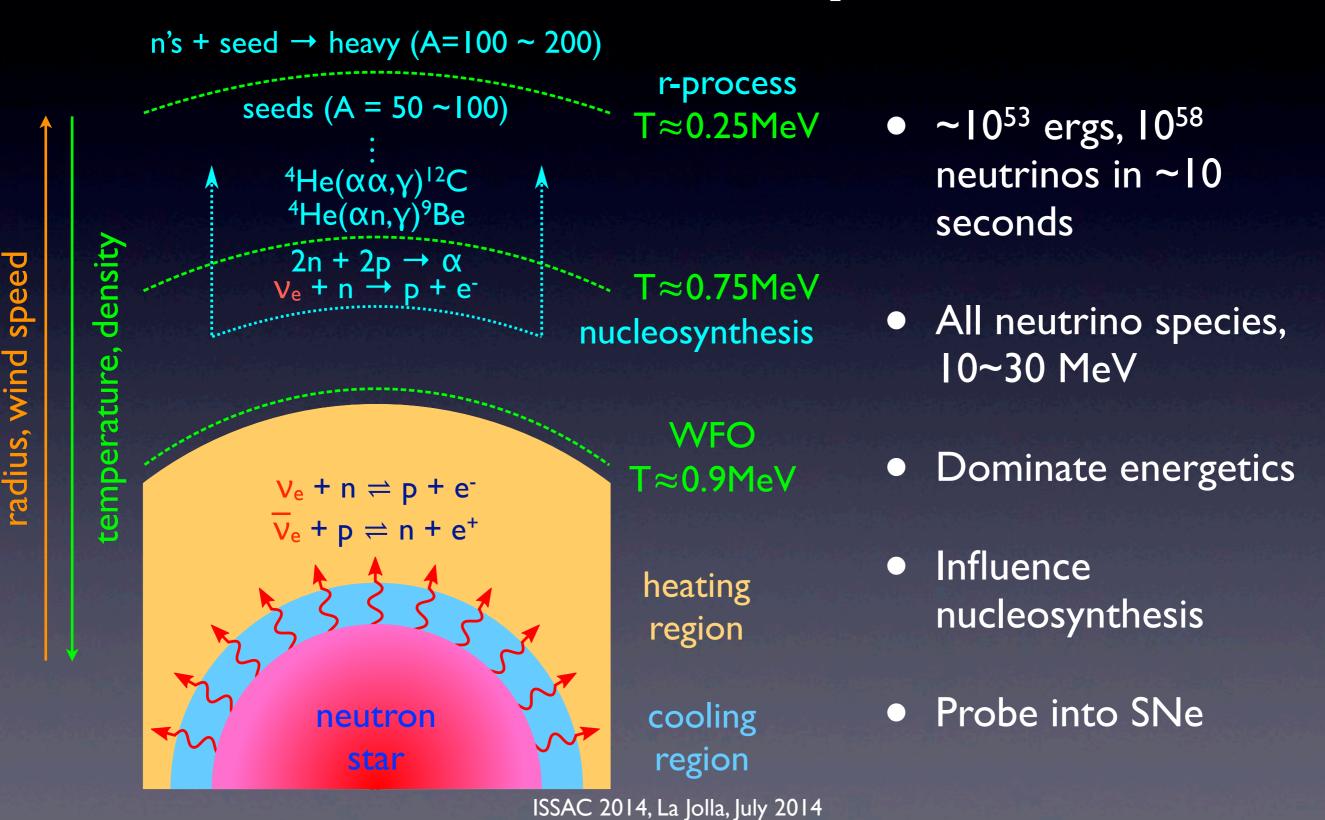
Huaiyu Duan

International Summer School on AstroComputing 2014 Neutrino & Nuclear Astrophysics

Outline

Introduction & overview
Understandings & insights
New developments & challenges

Neutrinos in Supernovae



 $i\frac{\mathrm{d}}{\mathrm{d}\lambda}|\psi_{\nu,\mathbf{p}}\rangle = \hat{H}|\psi_{\nu,\mathbf{p}}\rangle$

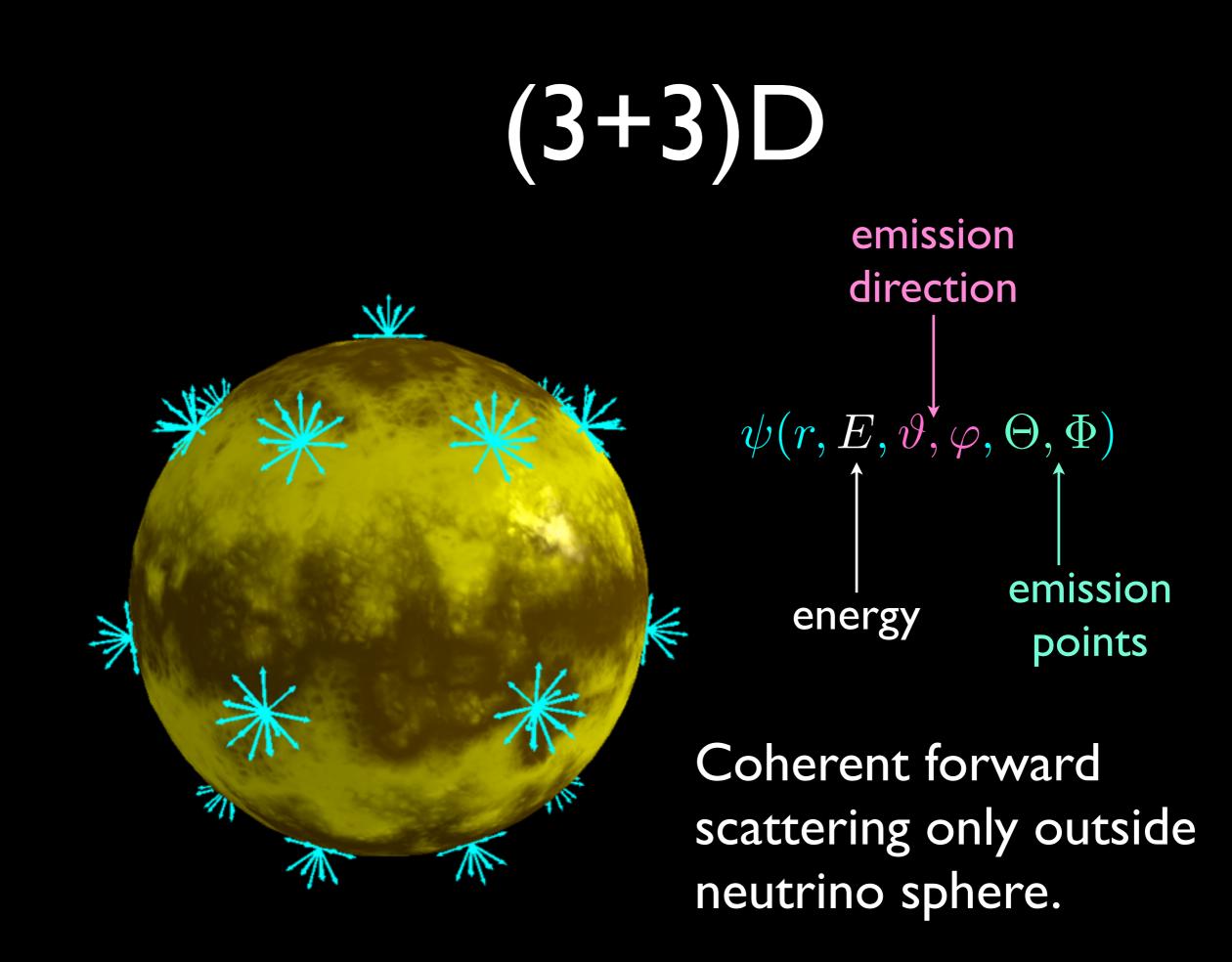
 $\mathsf{H} = \frac{\mathsf{M}^2}{2E} + \sqrt{2}G_{\mathrm{F}}\operatorname{diag}[\mathbf{n}_e, 0, 0] + \mathsf{H}_{\nu\nu}$

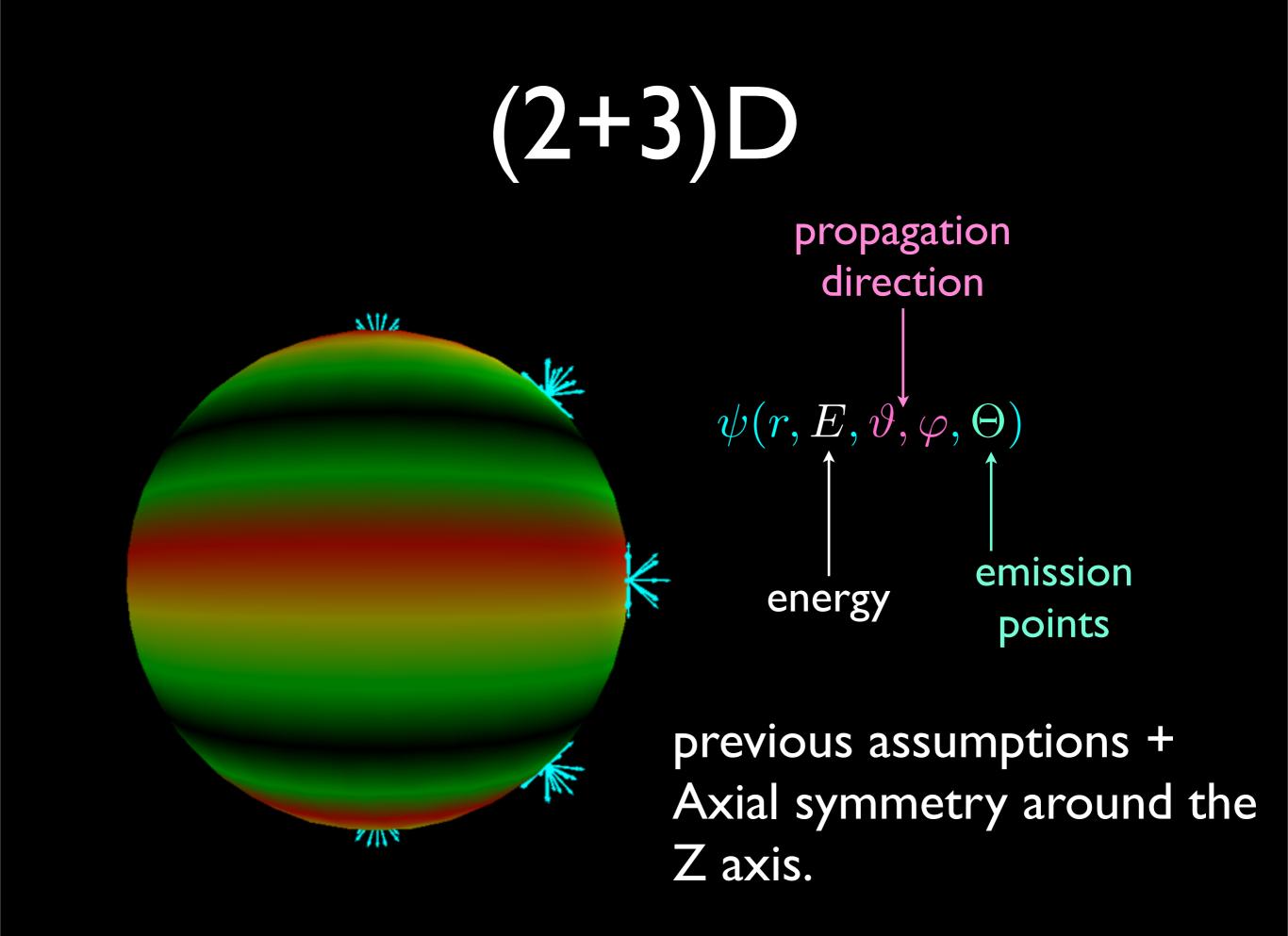
– neutrinosphere

Vk

ISSAC 2014, La Jolla, July 2014

٧p



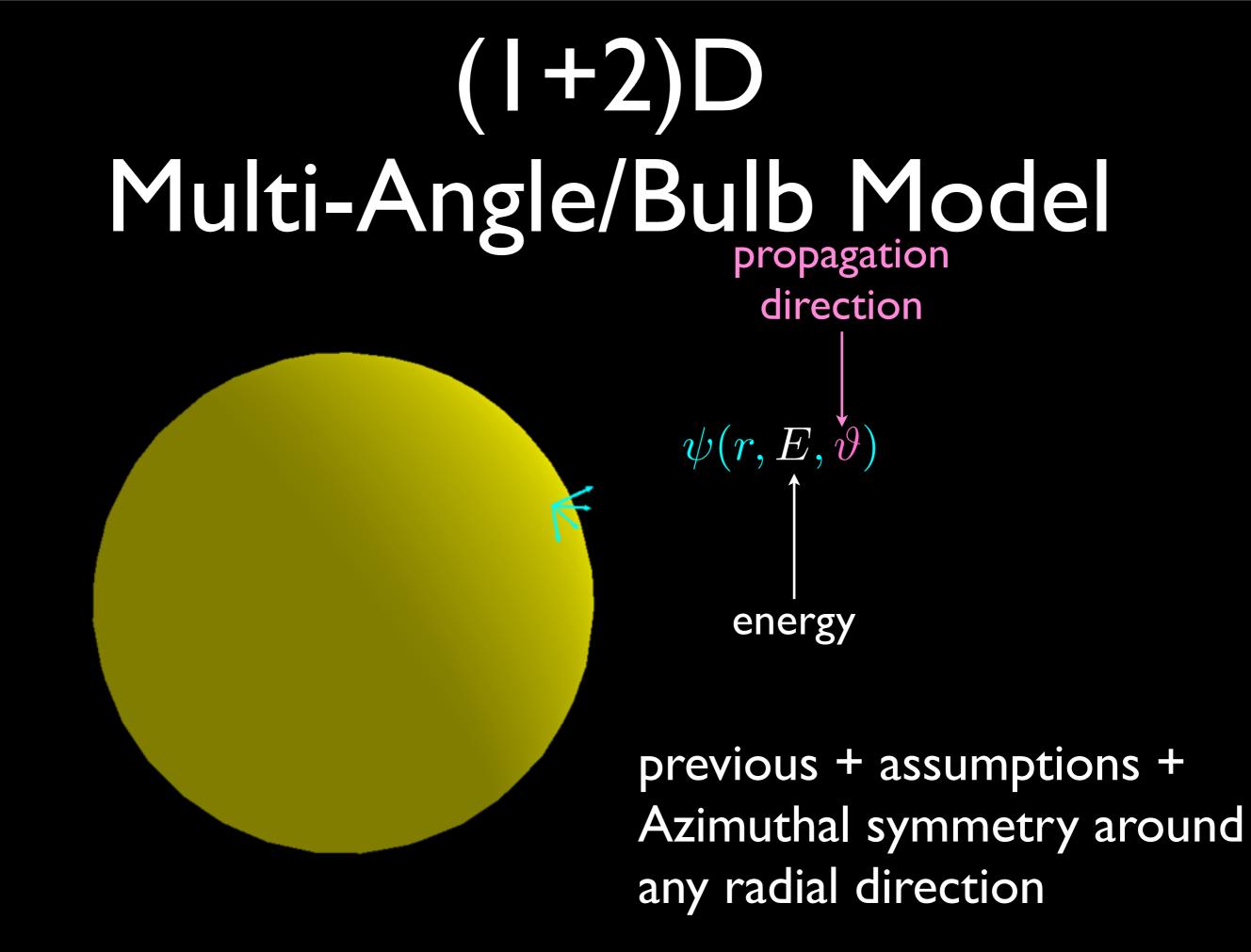


(I+3)D propagation direction

energy

 $\psi(r, E, \vartheta, \varphi)$

previous assumptions + Spherical symmetry about the center (Consistency?)



(I+I)D Single-Angle

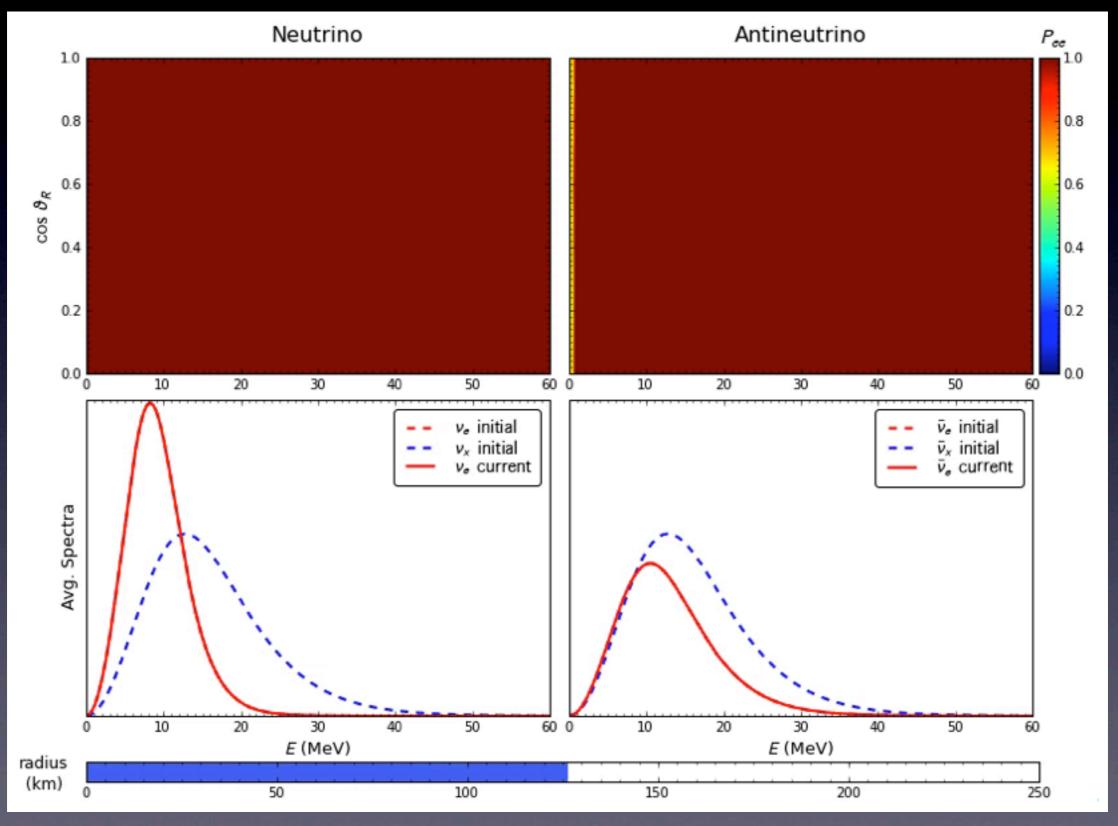
Equivalent to an expanding homogeneous neutrino gas

energy

 $\psi(r, E)$

previous assumptions + Trajectory independent neutrino flavor evolution

$\langle L_{\nu_e} \rangle = 4.1 \text{ foe, } \langle L_{\bar{\nu}_e} \rangle = 4.3 \text{ foe, } \langle L_{\nu_x,\bar{\nu}_x} \rangle = 7.9 \text{ foe}$ $\langle E_{\nu_e} \rangle = 9.4 \text{ MeV}, \ \langle E_{\bar{\nu}_e} \rangle = 13.0 \text{ MeV}, \ \langle E_{\nu_x,\bar{\nu}_x} \rangle = 15.8 \text{ MeV}$



ISSAC 2014, La Jolla, July 2014

YES!! You can make discoveries through numerical calculations.

But are you sure whether the numerical calculations are correct?

Back-of-the-envelope Estimates

Neutrino Self-Coupling

$$i\frac{\mathrm{d}}{\mathrm{d}\lambda}|\psi_{\nu,\mathbf{p}}\rangle = \hat{H}|\psi_{\nu,\mathbf{p}}\rangle$$

mass squared matrix $H = \frac{M^2}{2E} + \sqrt{2}G_F \operatorname{diag}[n_e, 0, 0] + H_{\nu\nu}$ neutrino energy $\nu-\nu$ forward scattering

(self-coupling)

 $\mathsf{H}_{\nu\nu} = \sqrt{2}G_{\mathrm{F}} \int \mathrm{d}\mathbf{p}' (1 - \hat{\mathbf{p}} \cdot \hat{\mathbf{p}}')(\rho_{\mathbf{p}'} - \bar{\rho}_{\mathbf{p}'}^*)$

3 Energy Scales

$\mathsf{H} = \frac{\mathsf{M}^2}{2E} + \sqrt{2}G_{\mathrm{F}}\operatorname{diag}[\mathbf{n}_e, 0, 0] + \mathsf{H}_{\nu\nu}$

vacuum term: ∧_{vac}=∆m²/2E
matter (electron) density: ∧_{mat}=√2G_Fn_e
neutrino density: ∧_v=√2G_F(n_v-n_v)

Three Flavor MSW

Λ_{vac}≈Λ_{mat}: MSW resonance
Λ_{vac}(Δm²_☉, I0MeV) ~ (49 km)⁻¹
Λ_{vac}(Δm²_{atm}, I0MeV) ~ (1.6 km)⁻¹
Λ_{mat}(10¹² g/cc) ~ (0.005 mm)⁻¹
Both mass splittings are effective

 $\Lambda_{vac} = \Delta m^2 / 2E$ $\Lambda_{mat} = \sqrt{2}G_F n_e$

Bumpy Matter Profile

• $\Lambda_{vac} \approx \Lambda_{mat}$: MSW resonance

- $d(\ln \Lambda_{mat})/dr \ge \Lambda_{vac}$: non-adiabatic
- Track propagation of shockwaves (Schirato & Fuller, 2002; and others)

 Flavor depolarization at turbulence (cannot distinguish spectra of different flavor) (Friedland & Gruzinov, 2006; and others)

$$\Lambda_{vac} = \Delta m^2 / 2E$$
 $\Lambda_{mat} = \sqrt{2}G_F n_e$

Collective Oscillations

- Λ_{vac} depends on neutrino energy $\Rightarrow \Delta \Lambda_{vac}$: dispersion in energies
- $\Delta \Lambda_{vac} (\sim \Lambda_{vac}) \leq \Lambda_v \langle 1 \cos \Theta \rangle$: neutrinos with different energies oscillate in phase

 Λ_v (1-cos Θ) \propto r⁻²

٧k

 $\Lambda_{vac} = \Delta m^2 / 2E$ $\Lambda_v = \sqrt{2}GF(n_v - n_{\overline{v}})$

ISSAC 2014, La Jolla, July 2014

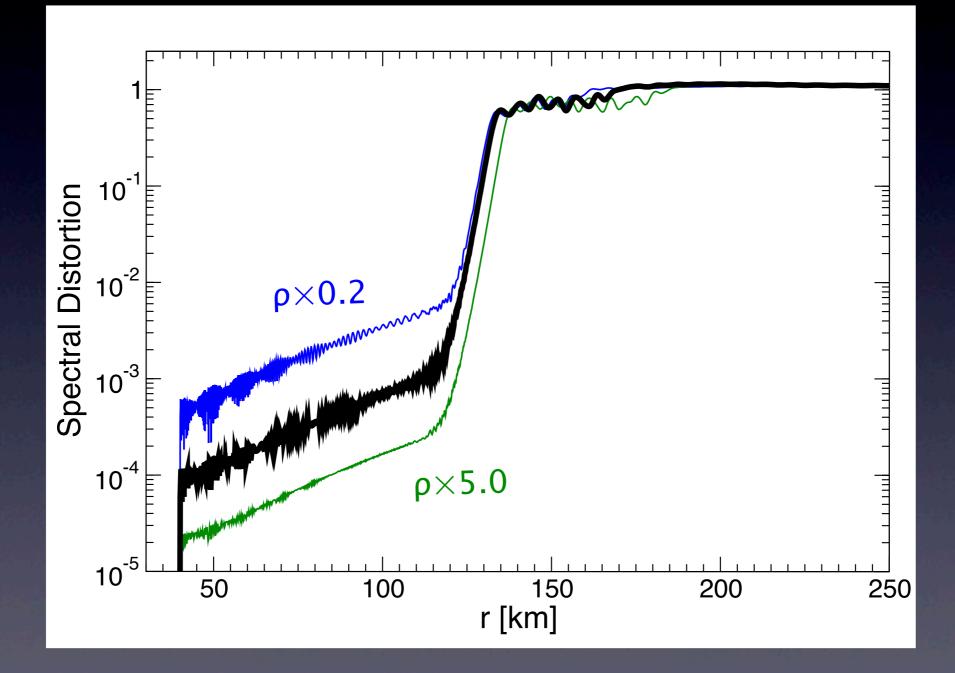
Self-Suppression

- $\Delta \Lambda_{vac} (\sim \Lambda_{vac}) \ll \Lambda_v \langle 1 \cos\Theta \rangle$: synchronization; no significant oscillations unless experiencing MSW resonance (Pastor et al 2001, 2002)
- Criterion for significant collective oscillations: $\Delta \Lambda_{vac} (\sim \Lambda_{vac}) \sim \Lambda_{v} \langle 1 - \cos \Theta \rangle \quad (HD, Fuller \& Qian, 2005)$

$$\Lambda_{vac} = \Delta m^2/2E$$
 $\Lambda_v = \sqrt{2}GF(n_v - n_{\overline{v}})$

- $\Lambda_{mat} \ge \Lambda_{V} \langle 1 \cos \Theta \rangle$: suppression of collective oscillations?
- No. Uniform matter distribution does not suppress collective oscillations in the homogeneous and isotropic neutrino gas. (HD, Fuller & Qian, 2005)

ISSAC 2014, La Jolla, July 2014



ISSAC 2014, La Jolla, July 2014

HD & Friedland (2010)

$$i \frac{\mathrm{d}}{\mathrm{d}\lambda} |\psi_{\nu,\mathbf{p}}\rangle = \hat{H} |\psi_{\nu,\mathbf{p}}\rangle$$

wavefronts of coll. osc.

φ φ+δφ

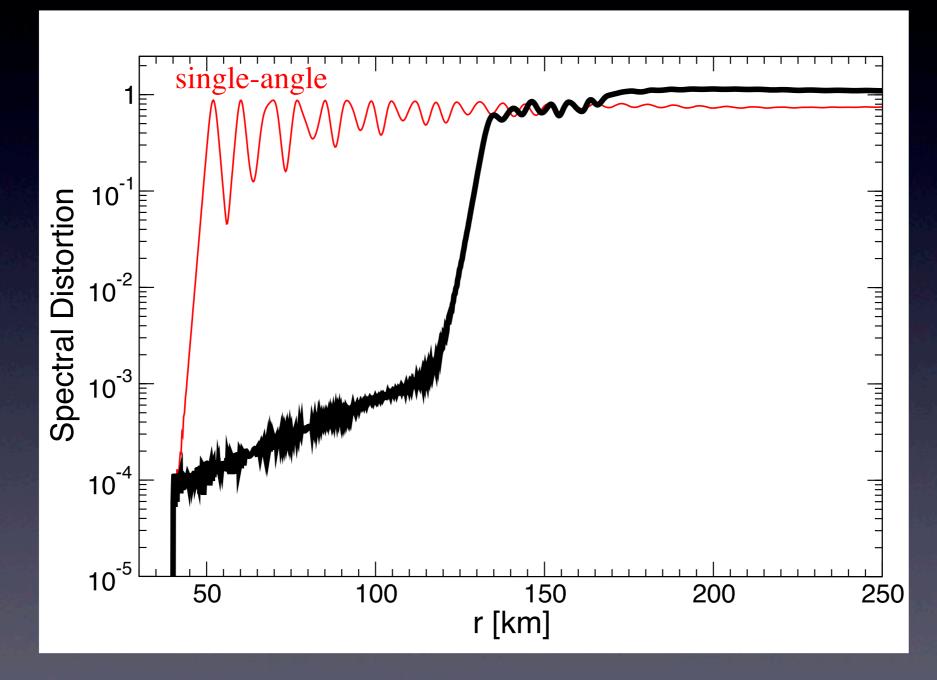
δr

 $(\cos\Theta)^{-1}\delta r$

Θ

ISSAC 2014, La Jolla, July 2014

- Dispersion in $\Lambda_{mat}d\lambda/dr: \Delta\Lambda_{mat}$
- Criterion for significant collective oscillations: $\Delta \Lambda_{mat} \sim \Lambda_{v} \langle 1 - \cos \Theta \rangle$
- ΔΛ_{mat} ≥ Λ_ν ⟨1-cosΘ⟩ ⇒ suppression of collective oscillations (Esteban-Pretel et al, 2008)
 ΔΛ_{mat} ∝ r⁻² ρ(r) ⇒ suppression only at early-time and/or very close to NS
 Λ_{vac}=Δm²/2E Λ_{mat}=√2G_Fn_e Λ_ν=√2G_F(n_v-n_v)



ISSAC 2014, La Jolla, July 2014

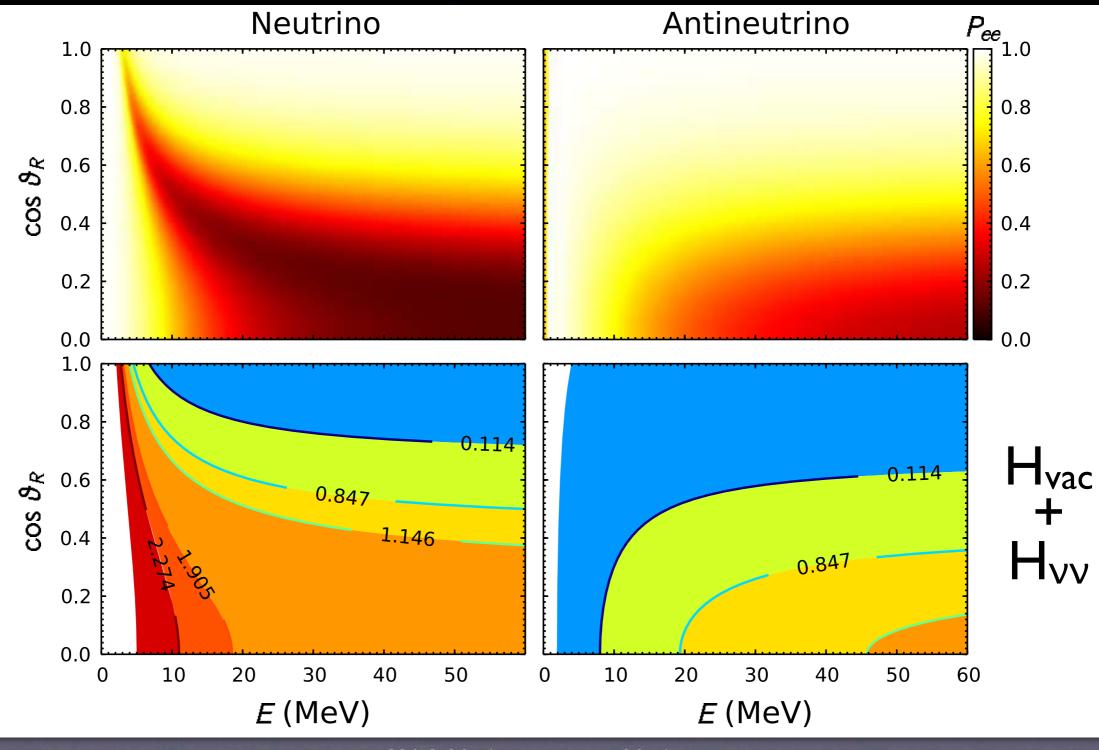
HD & Friedland (2010)

• $\Lambda_{v}\langle 1-\cos\Theta \rangle$ depends on neutrino emission angle \Rightarrow dispersion in angles $\Delta\Lambda_{v}$ ($\sim\Lambda_{v}\langle 1-\cos\Theta \rangle$)

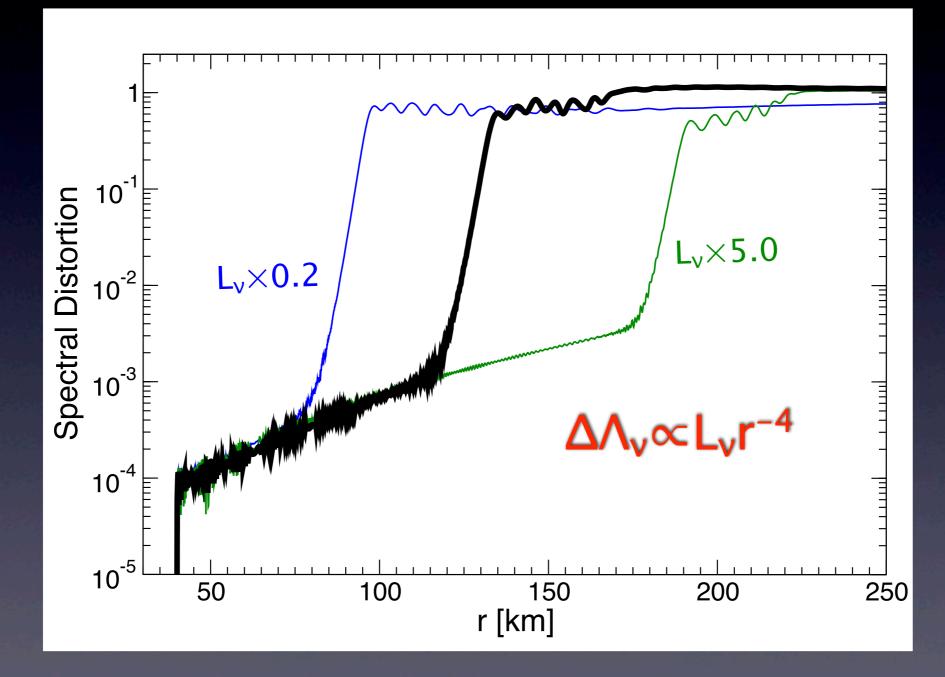
• Criterion for significant collective oscillations: $\Delta \Lambda_{vac} \sim \Delta \Lambda_{v} \sim \Lambda_{v} \langle 1 - \cos \Theta \rangle \qquad (HD \& Friedland, 2010)$

 $\mathsf{H}_{\nu\nu} = \sqrt{2}G_{\mathrm{F}} \int \mathrm{d}\mathbf{p}' (1 - \hat{\mathbf{p}} \cdot \hat{\mathbf{p}}') (\rho_{\mathbf{p}'} - \bar{\rho}_{\mathbf{p}'}^*)$

 $\Lambda_{vac} = \Delta m^2 / 2E$ $\Lambda_v = \sqrt{2}GF(n_v - n_{\overline{v}})$



ISSAC 2014, La Jolla, July 2014



ISSAC 2014, La Jolla, July 2014

HD & Friedland (2010)

Tools & Toy Models

Vacuum Oscillations

neutrinos are generated/detected in flavor states

neutrino mass eigenstates \neq neutrino flavor states

$$|\nu_1\rangle = \cos\theta_{\rm v}|\nu_e\rangle + \sin\theta_{\rm v}|\nu_{\mu}\rangle \quad \text{with mass } m_1$$
$$|\nu_2\rangle = -\sin\theta_{\rm v}|\nu_e\rangle + \cos\theta_{\rm v}|\nu_{\mu}\rangle \quad \text{with mass } m_2$$

vacuum mixing angle

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}x}\begin{bmatrix}\langle\nu_e|\psi_\nu\rangle\\\langle\nu_\mu|\psi_\nu\rangle\end{bmatrix} = \frac{1}{2}\begin{bmatrix}-\omega\cos 2\theta_{\mathrm{v}} & \omega\sin 2\theta_{\mathrm{v}}\\\omega\sin 2\theta_{\mathrm{v}} & \omega\cos 2\theta_{\mathrm{v}}\end{bmatrix}\begin{bmatrix}\langle\nu_e|\psi_\nu\rangle\\\langle\nu_\mu|\psi_\nu\rangle\end{bmatrix}$$
$$\mathbf{1}$$
 vac. osc. freq. $\omega = \frac{\delta m^2}{2E_\nu}$
$$\delta m^2 = m_2^2 - m_1^2$$

Neutrino Flavor Isospin

Two-component system

spin-1/2

2×2 Hermitian matrix $\mathbf{H} = H_0 \mathbb{1} + \mathbf{H} \cdot \boldsymbol{\sigma}$

ISSAC 2014, La Jolla, July 2014

Neutrino Flavor Isospin

Weak

Isospin

