Collective Neutrino Oscillations

Huaiyu Duan

International Summer School on AstroComputing 2014 Neutrino \& Nuclear Astrophysics

Outline

\checkmark Introduction \& overview
> Understandings \& insights

- New developments \& challenges

Ghostly particle

mass \rightarrow charge \rightarrow spin \rightarrow name \rightarrow	I	II	III	
	$\begin{array}{lll} 2.4 & \mathrm{MeV} \\ 2 / 3 & \\ 1 / 2 & \\ & & \\ & \text { up } \end{array}$	$$	$$	$\begin{array}{ll} 0 & \\ 0 & \\ 1 & \\ \text { photon } \end{array}$
	$\begin{aligned} & 4.8 \mathrm{MeV} \\ & 1 / 2 \\ & \text { down } \end{aligned}$	$\begin{aligned} & 104 \mathrm{MeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { strange } \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{GeV} \\ & -1 / 3 \\ & 1 / 2 \\ & \text { bottom } \end{aligned}$	$\begin{array}{\|lr} 0 & \\ 0 & \\ 1 & \\ & \text { gluon } \end{array}$
	$\begin{aligned} & <2.2 \mathrm{eV} \\ & 0 \vee \mathrm{e} \\ & 1 / 2 \mathrm{e} \\ & \text { electron } \\ & \text { neutrino } \end{aligned}$	$\left.\right\|_{\substack{<0.17 \mathrm{MeV} \\ 0 \\ \text { meutrino }}} ^{\boldsymbol{1} / 2}$	$\begin{array}{cc} \substack{<15.5 \\ 0 \\ \text { 1/2 } \\ \text { tau } \\ \text { neutrino }} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \begin{array}{l} 91.2 \mathrm{GeV} \\ 0 \\ \text { weak } \\ \text { force } \end{array} \end{aligned}$
$\frac{0}{0}$	$\begin{aligned} & 0.511 \mathrm{MeV} \\ & -1 \\ & 1 / 2 \\ & \text { electron } \end{aligned}$	$\underbrace{105.7 \mathrm{MeV}}_{\text {muon }}$	$\left\lvert\, \begin{array}{cc} 1.777 & \mathrm{GeV} \\ -1 & \\ 1 / 2 & \mathrm{C} \\ & \text { tau } \end{array}\right.$	

Wikimedia: Standard Model of Elementary Particles

Cross Section (low energy):

$$
\sigma \sim G_{F}^{2} E_{\nu}^{2}
$$

$$
\simeq 10^{-44}\left(\frac{E_{\nu}}{1 \mathrm{MeV}}\right)^{2} \mathrm{~cm}^{2}
$$

Mean Free Path:

$$
\begin{aligned}
\lambda & =\frac{1}{\sigma \rho_{\text {water }} N_{\mathrm{A}}} \\
& \simeq 10^{19}\left(\frac{E_{\nu}}{1 \mathrm{MeV}}\right)^{-2} \mathrm{~cm} \\
& \left(\mathrm{IAU}=1.5 \times 10^{13} \mathrm{~cm}\right)
\end{aligned}
$$

Neutrino Astronomy

$$
4 p+2 e^{-} \longrightarrow{ }^{4} \mathrm{He}+2 \nu_{e}+\text { energy }
$$

ES: Elastic Scattering $\nu_{x}+e^{-} \rightarrow \nu_{x}+e^{-}$

ISSAC 2014, La Jolla, July 2014

Neutrino Astronomy

ISSAC 2014, La Jolla, July 2014

Neutrinos in Supernovae

Neutrinos in SNe

$\Rightarrow \nu_{e}$ and $\bar{\nu}_{e}$ affect supernova dynamics and nucleosynthesis
$\Rightarrow\left\langle E_{\nu_{e}}\right\rangle<\left\langle E_{\bar{\nu}_{e}}\right\rangle<\left\langle E_{\nu_{\mu}, \nu_{\tau}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}}\right\rangle$

What if $\nu_{e} \rightleftharpoons \nu_{\mu, \tau}$ and/or $\bar{\nu}_{e} \rightleftharpoons \bar{\nu}_{\mu, \tau}$?

ISSAC 2014, La Jolla, July 2014

Vacuum Oscillations

neutrinos are generated/detected in flavor states
neutrino mass eigenstates \neq neutrino flavor states

$$
\begin{aligned}
& \left|\nu_{1}\right\rangle=\cos \theta_{\mathrm{v}}\left|\nu_{e}\right\rangle+\sin \theta_{\mathrm{v}}\left|\nu_{\mu}\right\rangle \quad \text { with mass } m_{1} \\
& \left|\nu_{2}\right\rangle=-\sin \theta_{\mathrm{v}}\left|\nu_{e}\right\rangle+\cos \theta_{\mathrm{v}}\left|\nu_{\mu}\right\rangle \quad \text { with mass } m_{2}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
-\omega \cos 2 \theta_{\mathrm{v}} & \omega \sin 2 \theta_{\mathrm{v}} \\
\omega \sin 2 \theta_{\mathrm{v}} & \omega \cos 2 \theta_{\mathrm{v}}
\end{array}\right]\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right] \\
\delta m^{2}=m_{2}^{2}-m_{1}^{2}
\end{gathered}
$$

ISSAC 2014, La Jolla, July 2014

Vacuum Oscillations

$$
\begin{array}{r}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
-\omega \cos 2 \theta_{\mathrm{v}} & \omega \sin 2 \theta_{\mathrm{v}} \\
\omega \sin 2 \theta_{\mathrm{v}} & \omega \cos 2 \theta_{\mathrm{v}}
\end{array}\right] \\
\hat{L} \text { vac. osc. freq. } \omega=\frac{\delta \nu^{2}\left|\psi_{\nu}\right\rangle}{2 E_{\nu}}
\end{array}
$$

initially $|\psi(x=0)\rangle=\left|\nu_{e}\right\rangle$

$$
P_{\nu_{e} \nu_{e}}(x) \equiv\left|\left\langle\nu_{e} \mid \psi(x)\right\rangle\right|^{2}=1-\sin ^{2} 2 \theta_{\mathrm{v}} \sin ^{2}\left(\frac{\delta m^{2} x}{4 E_{\nu}}\right)
$$

\uparrow neutrino survival probability

MSW Effect

does not affect neutrino oscillations

Wolfenstein (1978)

ISSAC 2014, La Jolla, July 2014

MSW Effect

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} x}\left[\begin{array}{c}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
2 \sqrt{2} G_{\mathrm{F}} n_{e}-\omega \cos 2 \theta_{\mathrm{v}} & \omega \sin 2 \theta_{\mathrm{v}} \\
\omega \sin 2 \theta_{\mathrm{v}} & \omega \cos 2 \theta_{\mathrm{v}}
\end{array}\right]\left[\begin{array}{l}
\left\langle\nu_{e} \mid \psi_{\nu}\right\rangle \\
\left\langle\nu_{\mu} \mid \psi_{\nu}\right\rangle
\end{array}\right]
$$

vac. osc. freq. $\omega=\frac{\delta m^{2}}{2 E_{\nu}}$

Mikheyev, Smirnov (| 985)

Three Flavor Mixing

WEAK FLAVOR STATES
VACUUM MASS EIGENSTATES
$\left(\begin{array}{l}v_{c} \nu_{c} \\ \nu_{\mu} \\ \nu_{r}\end{array}\right)$
$\delta m_{12}^{2} \simeq \delta m_{\odot}^{2} \simeq 7-8 \times 10^{-5} \mathrm{eV}^{2}, \quad \theta_{12} \simeq \theta_{\odot} \simeq 0.6$
$\left|\delta m_{23}^{2}\right| \simeq \delta m_{\mathrm{atm}}^{2} \simeq 2-3 \times 10^{-3} \mathrm{eV}^{2}, \quad \theta_{23} \simeq \theta_{\mathrm{atm}} \simeq \frac{\pi}{4}$
$\left|\delta m_{13}^{2}\right| \simeq\left|\delta m_{23}^{2}\right| \simeq 2-3 \times 10^{-3} \mathrm{eV}^{2}, \quad \theta_{13} \simeq 0.15$
ϕ is unknown \longleftarrow CP violation phase
ISSAC 2014, La Jolla, July 2014

Mass Hierarchy

normal mass hierarchy inverted mass hierarchy

ISSAC 2014, La Jolla, July 2014

Oscillations in SN

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathbf{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathbf{p}}\right\rangle
$$

Neutrino Self-Coupling

No oscillation effect Fuller et al (I987) Pantaleone (I992)

ISSAC 2014, La Jolla, July 2014

Density Matrix

Pure State:

$$
|\psi\rangle \Longrightarrow \rho=\left[\begin{array}{ll}
\left\langle\nu_{e} \mid \psi\right\rangle\left\langle\psi \mid \nu_{e}\right\rangle & \left\langle\nu_{e} \mid \psi\right\rangle\left\langle\psi \mid \nu_{x}\right\rangle \\
\left\langle\nu_{x} \mid \psi\right\rangle\left\langle\psi \mid \nu_{e}\right\rangle & \left\langle\nu_{x} \mid \psi\right\rangle\left\langle\psi \mid \nu_{x}\right\rangle
\end{array}\right]
$$

Example: $\left|\nu_{e}\right\rangle \Longrightarrow \rho=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

Mixed State:

$$
\rho \propto\left[\begin{array}{cc}
n_{\nu_{e}} & 0 \\
0 & n_{\nu_{x}}
\end{array}\right]
$$

ISSAC 2014, La Jolla, July 2014

Neutrino Self-Coupling

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathbf{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathbf{p}}\right\rangle
$$

mass matrix

$$
\mathrm{H}=\frac{\mathrm{M}^{2}}{2 E}
$$ neutrino energy

electron density

$\mathrm{v}-\mathrm{v}$ forward scattering (self-coupling)

$$
\mathrm{H}_{\nu \nu}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{~d} \mathbf{p}^{\prime}\left(1-\hat{\mathbf{p}} \cdot \hat{\mathbf{p}}^{\prime}\right)\left(\rho_{\mathbf{p}^{\prime}}-\bar{\rho}_{\mathbf{p}^{\prime}}^{*}\right)
$$

ISSAC 2014, La Jolla, July 2014

V oscillations in SN

$$
\begin{gathered}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathbf{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathrm{p}}\right\rangle \\
\mathrm{H}=\frac{\mathrm{M}^{2}}{2 E}+\sqrt{2} G_{\mathrm{F}} \operatorname{diag}\left[n_{e}, 0,0\right]+\mathrm{H}_{\nu \nu}
\end{gathered}
$$

ISSAC 2014, La Jolla, July 2014

V oscillations in SN

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left|\psi_{\nu, \mathrm{p}}\right\rangle=\hat{H}\left|\psi_{\nu, \mathrm{p}}\right\rangle
$$

$$
\mathrm{H}=\frac{\mathrm{M}^{2}}{2 E}+\sqrt{2} G_{\mathrm{F}} \operatorname{diag}\left[\eta_{e}, 0,0\right]+\mathrm{H}_{\nu \nu}
$$

ISSAC 2014, La Jolla, July 2014

$(3+3) \mathrm{D}$

Coherent forward scattering only outside neutrino sphere.

$(2+3) \mathrm{D}$

previous assumptions + Axial symmetry around the Z axis.

$(I+3) D$

previous assumptions + Spherical symmetry about the center (Consistency?)
Mu|ti-Angle/Bulb

$(I+I) D$ Single-Angle

Equivalent to an expanding homogeneous neutrino gas

previous assumptions + Trajectory independent neutrino flavor evolution

Semi-Analytic Treatment

$$
\mathrm{H}_{\nu \nu}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{~d} \mathbf{p}^{\prime}\left(1-\hat{\mathbf{p}} \cdot \hat{\mathbf{p}}^{\prime}\right)\left(\rho_{\mathbf{p}^{\prime}}-\bar{\rho}_{\mathbf{p}^{\prime}}^{*}\right)
$$

Qian \& Fuller (1995)

- Single-angle approximation. Qian \& Fulier (I995)
- Assume that the off-diagonal elements of ρ are 0 .
- They are 0 in the adiabatic MSW flavor evolution.
- They average to 0 in the non-adiabatic case.

Numerical Treatment

Samuel (I993)

- Homogeneous \& isotropic neutrino gas.
- Small electronneutrino excess.
- Self-maintained coherence.

Numerical Treatment

Kostelecky \& Samuel (I993)

- Homogeneous \& isotropic neutrino gas.
- Small electronneutrino excess.
- Self-maintained coherence.

Numerical Treatment

Pastor \& Raffelt (2002)

- Single-angle approximation
- Large masssquared difference
- Synchronized neutrino oscillations

FLAT

adaptive trapezoidal rule

NeuBeam energy bins

active-sterile
?
3×3 active

- Highly
modularized program
- Multi-purpose
- single-angle vs. multi-angle
- 2 flavors vs. 3 flavors

$$
\delta m^{2}=3 \times 10^{-3} \mathrm{eV}^{2} \simeq \delta m_{\mathrm{atm}}^{2}, \theta_{\mathrm{v}}=0.1, L_{\nu}=0
$$

$$
\delta m^{2}=3 \times 10^{-3} \mathrm{eV}^{2} \simeq \delta m_{\mathrm{atm}}^{2}, \theta_{\mathrm{v}}=0.1, L_{\nu}=10^{51} \mathrm{erg} / \mathrm{s}
$$

$$
\delta m^{2}=-3 \times 10^{-3} \mathrm{eV}^{2} \simeq \delta m_{\mathrm{atm}}^{2}, \theta_{\mathrm{v}}=0.1, L_{\nu}=10^{51} \mathrm{erg} / \mathrm{s}
$$

ISSAC 2014, La Jolla, July 2014
neutrino

3 Flavor Mixing

Multiple Spectral Splits

Dasgupta et al (2009)

3 Flavor Instability

Friedland (2010)

$$
\begin{gathered}
\left\langle L_{\nu_{e}}\right\rangle=4.1 \text { foe, }\left\langle L_{\bar{\nu}_{e}}\right\rangle=4.3 \text { foe, }\left\langle L_{\nu_{x}, \bar{\nu}_{x}}\right\rangle=7.9 \text { foe } \\
\left\langle E_{\nu_{e}}\right\rangle=9.4 \mathrm{MeV},\left\langle E_{\bar{\nu}_{e}}\right\rangle=13.0 \mathrm{MeV},\left\langle E_{\nu_{x}, \bar{\nu}_{x}}\right\rangle=15.8 \mathrm{MeV}
\end{gathered}
$$

$$
\begin{gathered}
\left\langle L_{\nu_{e}}\right\rangle=4.1 \text { foe, }\left\langle L_{\bar{\nu}_{e}}\right\rangle=4.3 \text { foe },\left\langle L_{\nu_{x}, \bar{\nu}_{x}}\right\rangle=7.9 \text { foe } \\
\left\langle E_{\nu_{e}}\right\rangle=9.4 \mathrm{MeV},\left\langle E_{\bar{\nu}_{e}}\right\rangle=13.0 \mathrm{MeV},\left\langle E_{\nu_{x}, \bar{\nu}_{x}}\right\rangle=15.8 \mathrm{MeV}
\end{gathered}
$$

Multiangle Suppression

Multiangle Suppression

Multiangle Suppression

In Magnetic Field

Assume neutrinos to be Majorana particles.

de Gouvêa \& Shalgar (2012, 2013)

ISSAC 2014, La Jolla, July 2014

Matter-Neutrino Resonance

ISSAC 2014, La Jolla, July 2014

- Anti-neutrino excess
- Merging compact objects
- Single-angle

Malkus, Friedland, McLaughlin (2014)

YES!! You can make discoveries through numerical calculations.

But are you sure whether the numerical calculations are correct?

