
HiPACC-Meeting 03/21/2014

Ralf Kähler
(KIPAC/SLAC)

GPU-Based Visualization of
AMR and N-Body Dark Matter Simulation Data

COMPUTER GRAPHICS

!

!

!

!

Rasterization

COMPUTER GRAPHICS

Assumption (for now):

Input object(s) represented as triangulated mesh

http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png

RASTERIZATION-BASED GRAPHICS

Text

http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg

http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Rasterization

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Rasterization

Color-coding

Graphics Pipeline for Rasterization

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Rasterization

Color-coding

Occlusion Culling,
Blending, etc.

Programmable Graphics Pipeline

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Programmable Graphics Pipeline

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Vertex Shader:
- operates on input vertices
- change size, color, position

!

Programmable Graphics Pipeline

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Geometry & Tessellation Shader
- destroy or add primitives

!

Vertex Shader:
- operates on input vertices
- change size, color, position

!

Programmable Graphics Pipeline

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Input mesh topology

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Fragment/Pixel Shader:
- color-code pixels
- discard pixels

!

Geometry & Tessellation Shader
- destroy or add primitives

!

Vertex Shader:
- operates on input vertices
- change size, color, position

!

Graphics Hardware

Efficient hardware units
texture mapping
!
rasterization
pixel operation (blending)
visibility testing

!
!
Data parallelism (SIMD)

- triangles and pixels processed in parallel
-> massively parallel architectures with thousands of cores

!
!
!

} not available in CUDA/OpenCL

AMNH Planetarium Show: “Dark Universe” (2013), narrated by Neil deGrasse Tyson,
Gravitational Lensing Scene (Kaehler, Emmart, Abel)

Background Galaxies:
 Halos from Millenium XXL Simulation (Angulo et al.)

Gravitational Lensing:
 Computed in Fragment Shader assuming NFW profile

Foreground Galaxies:
 Time-dependent 3D models
 Extracted from Enzo Simulation (Kim et al.) using Halo Finder

Rendering for American Museum of Natural History Show “The Big Bang”, Narrated by Liam Neeson
Kaehler, Kim, Abel (Stanford/SLAC)

LENSING SCENE

rendered with 100 MPixel resolution

!
more than 1 TByte of image data

VISUALIZATION OF N-BODY DARK MATTER
SIMULATIONS USING RASTERIZATION GRAPHICS

DENSITY PROJECTIONS

�
proj

=

Z
�(x)dx

Integrated density along line-of-sight

!
!
!
!

�
proj

=

Z
�(x)dx

DENSITY PROJECTIONS

!
!
!

Estimation of Dark Matter Densities between tracers ?

!
!
!

Kernel smoothing (SPH)

density around tracer estimated by volume of sphere of n-nearest neighbors

smoothed by kernel profile centered at particle’s position

Box filter, Gaussian, Cubic-splines, ...

!
see e.g. Monaghan [1998], Fraedrich et al. [2009]

DENSITY PROJECTIONS

Simulation data: Hao-Yi Wu (Stanford), Oliver Hahn (Stanford), Risa Wechsler (Stanford)

Problems

to much smoothing

DENSITY PROJECTIONS

Kaehler, Hahn, Abel [2012]

noise in under-dense regions

Problems

DENSITY PROJECTIONS

Kaehler, Hahn, Abel [2012]

Tessellation of Dark Matter Sheet in Phase-Space

Abel, Hahn, Kaehler [2011]

!
!
Initial Conditions:

Tracers placed on regular grid

!
Pairs of tracers define cells

!

TESSELLATION

v

x

tracers define cells

...

c0 c1 cn-1...

TESSELLATION

Assumption: same amount of mass per cell

v

x

tracers define cells

...

c0 c1 cn-1...

TESSELLATION

Connectivity constant over time

!
Motion of tracers deforms cells

!
Densities change over time v

x
c0

c1

c2

c3

... cn-1

TESSELLATION

Mass density computation:

project cells into position space

v

x
c0

c1

c2

c3

... cn-1

1 DM stream

TESSELLATION

Mass density computation:

project cells into position space

v

x
c0

c1

c2

c3

... cn-1

3 DM streams

TESSELLATION

Mass density computation:

project cells into position space

v

x
c0

c1

c2

c3

... cn-1

1 DM stream

TESSELLATION

y

x

Time 1 < Time 2 < Time 3

TESSELLATION

Subdivision of cubical cells by tetrahedra

always convex

!

Freudenthal Triangulation[1942]

6 Tetrahedra per Cube

Tetrahedra defined by triangles, so let’s use rasterization graphics

Large number of tetrahedral elements

5123 tracer particles ⇒ 8×108 tetrahedra

!

PROBLEMS

Large number of tetrahedral elements

5123 tracer particles ⇒ 8×108 tetrahedra

!
Memory requirements for 5123 tracer particles

positions: 1.5 GBytes

densities: 3 GBytes

connectivity: ~17 GBytes

PROBLEMS

GPU-BASED DENSITY PROJECTION APPROACH

Features

 no-connectivity information transferred between CPU and GPU

 no preprocessing:

 geometries of tets constructed on-the-fly on GPU

 densities of tets computed on-the-fly on GPU

!
Kaehler, Hahn, Abel [2012]

GPU PROCESSING

VERTEX SHADER
one instance per cell (instanced rendering)
samples cell’s vertices

GEOMETRY SHADER
computes volume & density of tetrahedra
6 invocations per vertex shader instance

3D TEXTURE

!
Tracer positions stored in 3D RGB texture

Texel coordinate based on position at initial time

GPU

!
Memory requirements for 5123 tracer particles

positions: 1.5 GBytes

densities: 3 GBytes

connectivity: ~17 GBytes

DATA STORAGE

DISTRIBUTED RENDERING

Texture split in ‘bricks’

!
Bricks share data layer on faces

!
Bricks rendered on separate node

!
Compositing of partial results

RESULTS

SPH kernel smoothing Phase-Space Tessellation:
cell-projection approach

Kaehler, Hahn, Abel [2012]

“Dark Universe” Planetarium Show

Courtesy of D. Finnin, American Museum of Natural History

LARGE-SCALE-STRUCTURE SCENE

Simulation:

 2300 time steps

 768^3 tracers (256^3 run replicated 27 times)

!
Rendering:

 16 billion triangles per snapshot

 24 MPixel resolution

Hardware:

 Single Workstation with Nvidia Quadro 4000 card

Gravitational Lensing Scene for AMNH Planetarium Show: “Dark Universe” (2013) , (Kaehler, Emmart, Abel, Hahn)

GPU-Based Direct Volume Rendering of
Adaptive Mesh Refinement Data

DIRECT VOLUME RENDERING

Assign emission and absorption coefficient to data samples

!
Display resulting light intensity in image plane

!
!
—> Solve radiation transfer equation

⇤

⇤s
I(x,n, ⇥) = ��(x,n, ⇥)I(x,n, ⇥) + q(x,n, ⇥)

Assumption: no scattering

!
!
!
!
!
!
Simplified Transfer Equation

I(s) = I(s0)e��(s0,s) +
� s

s0

q(s⇥)e��(s�,s)ds⇥

⇥(s0, s1) :=
� s1

s0

�(t)dt

STRUCTURED AMR

Refined regions overlap coarse ones
!
!
!

!

Problem of overlapping regions

Decomposition of data domain

 Adaptive kD-tree

 Nodes consist of non-overlapping boxes

 No visibility cycles

!
Supports front-to-back / back-to-front traversal

!
!

Kaehler, Hege [2002]

“Slice-Based” Direct Volume Rendering

Exploit GPU support for filtering and blending

!
Traverse kD-tree on CPU

!
For each node at sufficient resolution:

 Upload data block as 3D texture

 Extraction of slices using texture hardware

 Blending into frame buffer

!
!

Kaehler, Hege [2002]

Animation for Discovery Channel Television Show: “The Unfolding Universe” (2002)
Visualization: R. Kaehler (KIPAC), D. Cox (NCSA), R. Patterson (NCSA), S.Levy (NCSA)
Numerical Simulation: T. Abel (KIPAC)

CPU GPU

Texture-Based
• ray/geometry setup
• traversal of kD-tree
• LOD selection
• access to whole domain
• data I/O

• data sampling
• blending

GPU-Raycasting I
• traversal of kD-tree
• LOD selection
• access to whole data domain
• data I/O

• ray setup
• data sampling
• blending

GPU-Raycasting || • data I/O

• traversal of kD-tree
• LOD selection
• access to whole data domain
• ray setup
• data sampling
• blending

GPU-BASED RAYCASTING

Traverse kD-tree on CPU

!
For each node at sufficient resolution:

 Render front faces of domain

 Instance of fragment shader for each covered pixel

 Compute ray-direction

 Sampling and color mapping

!
Display resulting pixel intensities

Kaehler, Wise, Abel, Hege [2008]

Examples

Simulation: Marcelo Alvarez (CITA), Tom Abel (KIPAC/Stanford)Simulation: Jonathan McKinney (UMD), Alexander Tchekhovsky (Princeton)
and Roger Blandford (Stanford)

Simulation: John Wise (Georgia Tech), Tom Abel (KIPAC)

AMR Volume Rendering on
KIPAC’s GPU-CLUSTER

!
!
4 MAC OS nodes

!
two NVIDIA 6800 cards

each

!
12 rendering instances
in parallel

CPU GPU

Texture-Based
• ray/geometry setup
• traversal of kD-tree
• LOD selection
• access to whole domain
• data I/O

• data sampling
• blending

GPU-Raycasting I
• traversal of kD-tree
• LOD selection
• access to whole data domain
• data I/O

• ray setup
• data sampling
• blending

GPU-Raycasting || • data I/O

• traversal of kD-tree
• LOD selection
• access to whole data domain
• ray setup
• data sampling
• blending

CPU GPU

Texture-Based
• ray/geometry setup
• traversal of kD-tree
• LOD selection
• access to whole domain
• data I/O

• data sampling
• blending

GPU-Raycasting I
• traversal of kD-tree
• LOD selection
• access to whole data domain
• data I/O

• ray setup
• data sampling
• blending

GPU-Raycasting || • data I/O

• traversal of kD-tree
• LOD selection
• access to whole data domain
• ray setup
• data sampling
• blending

GPU-RAYCASTING FOR AMR DATA

complete hierarchy accessible in fragment shader

(not just single subgrids)

!
!
allows for advanced shading techniques

GRADIENT-BASED SHADING

On-the-fly Gradient-Computation
 - reduced GPU memory requirements

On-the-fly Gradient-Computation

Simulation: William East (KIPAC)

Assumption: no scattering

!
!
!
!
!
!

⇥(s0, s1) :=
� s1

s0

�(t)dt

One Snapshot from Enzo Simulation by Wise and Abel.
 100,000 subgrids
 1 billion cells

GLOBAL ILLUMINATION FOR AMR DATA

Global Illumination by light source
computed on-the-fly in fragment shader

Thanks for your attention !

