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Figure 1 Floating-Point Operations per Second for the CPU and GPU
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COMPUTER GRAPHICS

Rasterization



COMPUTER GRAPHICS

Assumption (for now):

Input object(s) represented as triangulated mesh

http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png




RASTERIZATION-BASED GRAPHICS

http://en.wikipedia.org/wiki/File:Perspective Projection_Principle.jpg


http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg

Graphics Pipeline for Rasterization

Memory Buffers

tex descriptors

vertex data buffers

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”



Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”



Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors
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& Projection
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Graphics Pipeline for Rasterization
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Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Rasterization

Color-coding
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Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Rasterization

Color-coding

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”



Programmable Graphics Pipeline

emvey. Butiors B Input mesh topology
vertex descriptors

vertex data buffers

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”



Programmable Graphics Pipeline

Vertex Shader: Hswery BalAs Input mesh topology

vertex descriptors

- operates on input vertices
- change size, color, position

[—

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
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Programmable Graphics Pipeline

Vertex Shader: ”’"‘°"’B”"°" . Input mesh topology
- operates on input vertices woubmr el
- change size, color, position

[—

Triangle Assembly
& Projection

Geometry & Tessellation Shader
- destroy or add primitives

— global buffers

textures

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
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Programmable Graphics Pipeline

Vertex Shader:
- operates on input vertices
- change size, color, position

[—

Geometry & Tessellation Shader
- destroy or add primitives

[—

Fragment/Pixel Shader:
- color-code pixels
- discard pixels _

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

global buffers
textures

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”



Graphics Hardware

Efficient hardware units
texture mapping

rasterization

pixel operation (blending) not available in CUDA/OpenCL
visibility testing

Data parallelism (SIMD)

- triangles and pixels processed in parallel
-> massively parallel architectures with thousands of cores
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AMNH Planetarium Show: “Dark Universe” (2013), narrated by Neil deGrasse Tyson,
Gravitational Lensing Scene (Kaehler, Emmart, Abel)



Background Galaxies:
Halos from Millenium XXL Simulation (Angulo et al.)
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Gravitational Lensing:
Computed in Fragment Shader assumlng NFW proflle




Foreground Galaxies: <
Time-dependent 3D models |
Extracted from Enzo Simulation (Kim et al.) using Halo Finder

~




Rendering for American Museum of Natural History Show “The Big Bang”, Narrated by Liam Neeson
Kaehler, Kim, Abel (Stanford/SLAC)



LENSING SCENE

rendered with 100 MPixel resolution

more than 1 TByte of image data



VISUALIZATION OF N-BODY DARK MATTER
SIMULATIONS USING RASTERIZATION GRAPHICS
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DENSITY PROJECTIONS

Integrated density along line-of-sight




DENSITY PROJECTIONS

Estimation of Dark Matter Densities between tracers ?



DENSITY PROJECTIONS

Kernel smoothing (SPH)

density around tracer estimated by volume of sphere of n-nearest neighbors
smoothed by kernel profile centered at particle’s position

Box filter, Gaussian, Cubic-splines, ...

see e.g. Monaghan [1998], Fraedrich et al. [2009]
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Simulation data: Hao-Yi Wu (Stanford), Oliver Hahn (Stanford), Risa Wechsler (Stanford)



DENSITY PROJECTIONS

Problems

to much smoothing

Kaehler, Hahn, Abel [2012]



DENSITY PROJECTIONS

Problems

noise in under-dense regions

Kaehler, Hahn, Abel [2012]



TESSELLATION

Tessellation of Dark Matter Sheet in Phase-Space
Abel, Hahn, Kaehler [2011]

tracers define cells

Initial Conditions:

Tracers placed on regular grid

Pairs of tracers define cells




TESSELLATION

Assumption: same amount of mass per cell

tracers define cells




TESSELLATION

Connectivity constant over time

Motion of tracers deforms cells

Densities change over time




TESSELLATION

Mass density computation:

project cells into position space

1 DM stream




TESSELLATION

Mass density computation:

project cells into position space

3 DM streams




TESSELLATION

Mass density computation:

project cells into position space

1 DM stream




TESSELLATION

Time1 < Time2 < Time3

L%%@




TESSELLATION

Subdivision of cubical cells by tetrahedra

always convex

X

Freudenthal Triangulation[1942]
6 Tetrahedra per Cube



Tetrahedra defined by triangles, so let's use rasterization graphics



PROBLEMS

Large nhumber of tetrahedral elements

5123 tracer particles = 8x 108 tetrahedra



PROBLEMS

Large nhumber of tetrahedral elements

5123 tracer particles = 8x 108 tetrahedra

Memory requirements for 51223 tracer particles

positions: 1.5 GBytes
densities: 3 GBytes
connectivity: ~17 GBytes



GPU-BASED DENSITY PROJECTION APPROACH

Features
no-connectivity information transferred between CPU and GPU
No preprocessing:
geometries of tets constructed on-the-fly on GPU

densities of tets computed on-the-fly on GPU

Kaehler, Hahn, Abel [2012]




GPU PROCESSING




DATA STORAGE

Memory requirements for 5123 tracer particles
positions: 1.5 GBytes
ucneities: 3 GBytes

connectivity: ~17+<Bvtes



DISTRIBUTED RENDERING

Texture split in ‘bricks’
Bricks share data layer on faces
Bricks rendered on separate node

Compositing of partial results




RESULTS

Phase-Space Tessellation:
cell-projection approach

Kaehler, Hahn, Abel [2012]

SPH kernel smoothing




“Dark Universe” Planetarium Show
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Courtesy of D. Finnin, American Museum of Natural History



LARGE-SCALE-STRUCTURE SCENE

Simulation:
2300 time steps
76873 tracers (256”73 run replicated 27 times)

Rendering:
16 billion triangles per snapshot

24 MPixel resolution

Hardware:
Single Workstation with Nvidia Quadro 4000 card



(2013) , (Kaehler, Emmart, Abel, Hahn)

Gravitational Lensing Scene for AMNH Planetarium Show: “Dark Universe”



GPU-Based Direct Volume Rendering of
Adaptive Mesh Refinement Data




DIRECT VOLUME RENDERING

Assign emission and absorption coefficient to data samples

Display resulting light intensity in image plane

—> Solve radiation transfer equation

— —Ii(Xa n, V)I(Xa 1, V) + q(X7 1, V)




camera

Assumption: no scattering

Simplified Transfer Equation




STRUCTURED AMR

Refined regions overlap coarse ones




Problem of overlapping regions

Decomposition of data domain
Adaptive kD-tree

Nodes consist of non-overlapping boxes

No visibility cycles

Supports front-to-back / back-to-front traversal

Kaehler, Hege [2002]



“Slice-Based” Direct Volume Rendering

Exploit GPU support for filtering and blending
Traverse kD-tree on CPU

For each node at sufficient resolution:

Upload data block as 3D texture

Extraction of slices using texture hardware

Blending into frame buffer

Kaehler, Hege [2002]




Animation for Discovery Channel Television Show: “The Unfolding Universe” (2002)
Visualization: R. Kaehler (KIPAC), D. Cox (NCSA), R. Patterson (NCSA), S.Levy (NCSA)
Numerical Simulation: T. Abel (KIPAC)



e ray/geometry setup

traversal of kD-tree
LOD selection

access to whole domain
data I/O

« data sampling
e blending




GPU-BASED RAYCASTING

Traverse kD-tree on CPU

For each node at sufficient resolution:
Render front faces of domain

Instance of fragment shader for each covered pixel
Compute ray-direction

Sampling and color mapping

Display resulting pixel intensities

Kaehler, Wise, Abel, Hege [2008]



Examples i

Simulation: John Wise (Georgia Tech), Tom Abel (KIPAC)

Simulation: Jonathan McKinney (UMD), Alexander Tchekhovsky (Princeton) Simulation: Marcelo Alvarez (CITA), Tom Abel (KIPAC/Stanford)
and Roger Blandford (Stanford)



AMR Volume Rendering on
KIPAC’'s GPU-CLUSTER

4 MAC OS nodes

two NVIDIA 6800 cards

each

12 rendering instances
in parallel




ray/geometry setup
traversal of kD-tree
LOD selection

access to whole domain
data I/O

traversal of kD-tree

LOD selection

access to whole data domain
data 1/O

data sampling
blending

ray setup
data sampling
blending



ray/geometry setup
traversal of kD-tree
LOD selection

access to whole domain
data I/O

data sampling
blending

traversal of kD-tree

LOD selection

access to whole data domain
data 1/O

data 1/O

ray setup
data sampling
blending

traversal of kD-tree

LOD selection

access to whole data domain
ray setup

data sampling

blending




GPU-RAYCASTING FOR AMR DATA

complete hierarchy accessible in fragment shader

(not just single subgrids)

allows for advanced shading techniques



GRADIENT-BASED SHADING

On-the-fly Gradient-Computation
- reduced GPU memory requirements



On-the-fly Gradient-Computation

®

Simulation: William East (KIPAC)



camera

Assumptionyfio scattering




GLOBAL ILLUMINATION FOR AMR DATA

One Snapshot from Enzo Simulation by Wise and Abel.
100,000 subgrids
1 billion cells



Global Illumination by light source
computed on-the-fly in fragment shader



Thanks for your attention !



