GPU-Based Visualization of
AMR and N-Body Dark Matter Simulation Data

Ralf Kahler
(KIPAC/SLAC)

HiPACC-Meeting 03/21/2014

Theoretical
GFLOP/'s

4750

4500 |

4250 - NVIDIA GPU Single Precision
4000 e NVIDIA GPU Double Precision

3750 Intel CPU Double Precision
3500 - ==p==|ntel CPU Single Precision

3250

3000

2750

2500 -

2250 -

2000

1750 -

1500 | Teda K20X
1250

1000

750 - Teda C2050

500 Teda C1060

Sandy Bridge
250 - ndy x%ee

0 tpentium @ : Bloomfield Westmere
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Figure 1 Floating-Point Operations per Second for the CPU and GPU

www.nvidia.com
CUDA C Programming Guide

COMPUTER GRAPHICS

Rasterization

COMPUTER GRAPHICS

Assumption (for now):

Input object(s) represented as triangulated mesh

http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png

RASTERIZATION-BASED GRAPHICS

http://en.wikipedia.org/wiki/File:Perspective Projection_Principle.jpg

http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg

Graphics Pipeline for Rasterization

Memory Buffers

tex descriptors

vertex data buffers

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Rasterization

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Rasterization

Color-coding

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Graphics Pipeline for Rasterization

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

Rasterization

Color-coding

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Programmable Graphics Pipeline

emvey. Butiors B Input mesh topology
vertex descriptors

vertex data buffers

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Programmable Graphics Pipeline

Vertex Shader: Hswery BalAs Input mesh topology

vertex descriptors

- operates on input vertices
- change size, color, position

[—

Triangle Assembly
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Programmable Graphics Pipeline

Vertex Shader: ”’"‘°"’B”"°" . Input mesh topology
- operates on input vertices woubmr el
- change size, color, position

[—

Triangle Assembly
& Projection

Geometry & Tessellation Shader
- destroy or add primitives

— global buffers

textures

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A Image from: FATAHALIAN,
closer look at GPUs” “A closer look at GPUs”

Programmable Graphics Pipeline

Vertex Shader:
- operates on input vertices
- change size, color, position

[—

Geometry & Tessellation Shader
- destroy or add primitives

[—

Fragment/Pixel Shader:
- color-code pixels
- discard pixels _

Memory Buffers Input mesh topology

vertex descriptors

Triangle Assembly
& Projection

global buffers
textures

Pixel coverage

Texture lookup

Occlusion Culling,
Blending, etc.

Image from: FATAHALIAN, “A
closer look at GPUs”

Image from: FATAHALIAN,
“A closer look at GPUs”

Graphics Hardware

Efficient hardware units
texture mapping

rasterization

pixel operation (blending) not available in CUDA/OpenCL
visibility testing

Data parallelism (SIMD)

- triangles and pixels processed in parallel
-> massively parallel architectures with thousands of cores

. -
v‘ .
- s B . « B - .
gy RS - o ’
- : » . '
. " » .
Y e ; P "
. - -
g w L 5 M 7 ' »
/e ' o ‘,é.' P -
‘ . 3 o » U
] .. oy .:. .
) . .- e
v N R ,
. 2 e
' o s ‘.. ¢ [4
. o.. - o &
) O
' - .., o ."‘
s ® . 2
. . Y
-
. . e
’
»

AMNH Planetarium Show: “Dark Universe” (2013), narrated by Neil deGrasse Tyson,
Gravitational Lensing Scene (Kaehler, Emmart, Abel)

Background Galaxies:
Halos from Millenium XXL Simulation (Angulo et al.)

-
'\)
. -~ - : 3
ve b Y 5 v .*‘1‘.
.. -~ 4 \ ’
b o / A ‘ _ ’
' / . ;
4 . i A . \
! dodt |
. R WO ‘
" : '] 'o..# 0’ ‘.;.
" - . y ”
' ' N o Ve D
” - ~ » .
. o % \' /‘
’ .‘ v\ - - e '.
s -
. /
»

Gravitational Lensing:
Computed in Fragment Shader assumlng NFW proflle

Foreground Galaxies: <
Time-dependent 3D models |
Extracted from Enzo Simulation (Kim et al.) using Halo Finder

~

Rendering for American Museum of Natural History Show “The Big Bang”, Narrated by Liam Neeson
Kaehler, Kim, Abel (Stanford/SLAC)

LENSING SCENE

rendered with 100 MPixel resolution

more than 1 TByte of image data

VISUALIZATION OF N-BODY DARK MATTER
SIMULATIONS USING RASTERIZATION GRAPHICS

-7
» A -
. L - b d »
' ljy- -
5 — ‘.?}
» 2
’ N - o
O) -
> 2 - o \‘
‘ » ~ - ™
» ? ';
v ‘ do ¥ i
- ,0. ~ A ’
) 1 : -
~ , ;
v . N
9. °
» . :
‘A

DENSITY PROJECTIONS

Integrated density along line-of-sight

DENSITY PROJECTIONS

Estimation of Dark Matter Densities between tracers ?

DENSITY PROJECTIONS

Kernel smoothing (SPH)

density around tracer estimated by volume of sphere of n-nearest neighbors
smoothed by kernel profile centered at particle’s position

Box filter, Gaussian, Cubic-splines, ...

see e.g. Monaghan [1998], Fraedrich et al. [2009]

e A N . - ekt
.. . . 3 '3, S s . _..&~.'-.,.‘ S ..-’..‘A ,
’ » a2 - A il 2 » - > . G N Ny Y

Simulation data: Hao-Yi Wu (Stanford), Oliver Hahn (Stanford), Risa Wechsler (Stanford)

DENSITY PROJECTIONS

Problems

to much smoothing

Kaehler, Hahn, Abel [2012]

DENSITY PROJECTIONS

Problems

noise in under-dense regions

Kaehler, Hahn, Abel [2012]

TESSELLATION

Tessellation of Dark Matter Sheet in Phase-Space
Abel, Hahn, Kaehler [2011]

tracers define cells

Initial Conditions:

Tracers placed on regular grid

Pairs of tracers define cells

TESSELLATION

Assumption: same amount of mass per cell

tracers define cells

TESSELLATION

Connectivity constant over time

Motion of tracers deforms cells

Densities change over time

TESSELLATION

Mass density computation:

project cells into position space

1 DM stream

TESSELLATION

Mass density computation:

project cells into position space

3 DM streams

TESSELLATION

Mass density computation:

project cells into position space

1 DM stream

TESSELLATION

Time1 < Time2 < Time3

L%%@

TESSELLATION

Subdivision of cubical cells by tetrahedra

always convex

X

Freudenthal Triangulation[1942]
6 Tetrahedra per Cube

Tetrahedra defined by triangles, so let's use rasterization graphics

PROBLEMS

Large nhumber of tetrahedral elements

5123 tracer particles = 8x 108 tetrahedra

PROBLEMS

Large nhumber of tetrahedral elements

5123 tracer particles = 8x 108 tetrahedra

Memory requirements for 51223 tracer particles

positions: 1.5 GBytes
densities: 3 GBytes
connectivity: ~17 GBytes

GPU-BASED DENSITY PROJECTION APPROACH

Features
no-connectivity information transferred between CPU and GPU
No preprocessing:
geometries of tets constructed on-the-fly on GPU

densities of tets computed on-the-fly on GPU

Kaehler, Hahn, Abel [2012]

GPU PROCESSING

DATA STORAGE

Memory requirements for 5123 tracer particles
positions: 1.5 GBytes
ucneities: 3 GBytes

connectivity: ~17+<Bvtes

DISTRIBUTED RENDERING

Texture split in ‘bricks’
Bricks share data layer on faces
Bricks rendered on separate node

Compositing of partial results

RESULTS

Phase-Space Tessellation:
cell-projection approach

Kaehler, Hahn, Abel [2012]

SPH kernel smoothing

“Dark Universe” Planetarium Show

.I‘, : . g .
'%"\J'- N

-v'l.x; Y

LR 'U’Jn. ",‘:‘,.'":'-"a.-;f.‘*. 03 .
ﬁ‘ : e 0 a8 QY TN .; i1 4
o 7Y =iz =T PV e, 3

Courtesy of D. Finnin, American Museum of Natural History

LARGE-SCALE-STRUCTURE SCENE

Simulation:
2300 time steps
76873 tracers (256”73 run replicated 27 times)

Rendering:
16 billion triangles per snapshot

24 MPixel resolution

Hardware:
Single Workstation with Nvidia Quadro 4000 card

(2013) , (Kaehler, Emmart, Abel, Hahn)

Gravitational Lensing Scene for AMNH Planetarium Show: “Dark Universe”

GPU-Based Direct Volume Rendering of
Adaptive Mesh Refinement Data

DIRECT VOLUME RENDERING

Assign emission and absorption coefficient to data samples

Display resulting light intensity in image plane

—> Solve radiation transfer equation

— —Ii(Xa n, V)I(Xa 1, V) + q(X7 1, V)

camera

Assumption: no scattering

Simplified Transfer Equation

STRUCTURED AMR

Refined regions overlap coarse ones

Problem of overlapping regions

Decomposition of data domain
Adaptive kD-tree

Nodes consist of non-overlapping boxes

No visibility cycles

Supports front-to-back / back-to-front traversal

Kaehler, Hege [2002]

“Slice-Based” Direct Volume Rendering

Exploit GPU support for filtering and blending
Traverse kD-tree on CPU

For each node at sufficient resolution:

Upload data block as 3D texture

Extraction of slices using texture hardware

Blending into frame buffer

Kaehler, Hege [2002]

Animation for Discovery Channel Television Show: “The Unfolding Universe” (2002)
Visualization: R. Kaehler (KIPAC), D. Cox (NCSA), R. Patterson (NCSA), S.Levy (NCSA)
Numerical Simulation: T. Abel (KIPAC)

e ray/geometry setup

traversal of kD-tree
LOD selection

access to whole domain
data I/O

« data sampling
e blending

GPU-BASED RAYCASTING

Traverse kD-tree on CPU

For each node at sufficient resolution:
Render front faces of domain

Instance of fragment shader for each covered pixel
Compute ray-direction

Sampling and color mapping

Display resulting pixel intensities

Kaehler, Wise, Abel, Hege [2008]

Examples i

Simulation: John Wise (Georgia Tech), Tom Abel (KIPAC)

Simulation: Jonathan McKinney (UMD), Alexander Tchekhovsky (Princeton) Simulation: Marcelo Alvarez (CITA), Tom Abel (KIPAC/Stanford)
and Roger Blandford (Stanford)

AMR Volume Rendering on
KIPAC’'s GPU-CLUSTER

4 MAC OS nodes

two NVIDIA 6800 cards

each

12 rendering instances
in parallel

ray/geometry setup
traversal of kD-tree
LOD selection

access to whole domain
data I/O

traversal of kD-tree

LOD selection

access to whole data domain
data 1/O

data sampling
blending

ray setup
data sampling
blending

ray/geometry setup
traversal of kD-tree
LOD selection

access to whole domain
data I/O

data sampling
blending

traversal of kD-tree

LOD selection

access to whole data domain
data 1/O

data 1/O

ray setup
data sampling
blending

traversal of kD-tree

LOD selection

access to whole data domain
ray setup

data sampling

blending

GPU-RAYCASTING FOR AMR DATA

complete hierarchy accessible in fragment shader

(not just single subgrids)

allows for advanced shading techniques

GRADIENT-BASED SHADING

On-the-fly Gradient-Computation
- reduced GPU memory requirements

On-the-fly Gradient-Computation

®

Simulation: William East (KIPAC)

camera

Assumptionyfio scattering

GLOBAL ILLUMINATION FOR AMR DATA

One Snapshot from Enzo Simulation by Wise and Abel.
100,000 subgrids
1 billion cells

Global Illumination by light source
computed on-the-fly in fragment shader

Thanks for your attention !

