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Rasterization



COMPUTER GRAPHICS

Assumption (for now): 

Input object(s) represented as triangulated mesh 

http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png



RASTERIZATION-BASED GRAPHICS

Text

http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg

http://en.wikipedia.org/wiki/File:Perspective_Projection_Principle.jpg


Graphics Pipeline for Rasterization
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Programmable Graphics Pipeline

Image from: FATAHALIAN, “A 
closer look at GPUs”

Image from: FATAHALIAN, 
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Input mesh topology

Triangle Assembly  
& Projection

Pixel coverage

Texture lookup

Occlusion Culling,  
Blending, etc.

Fragment/Pixel Shader: 
- color-code pixels 
- discard pixels 

!

Geometry & Tessellation Shader 
- destroy or add primitives 

!

Vertex Shader: 
- operates on input vertices 
- change size, color, position 

!



Graphics Hardware 

Efficient hardware units 
texture mapping 
!
rasterization 
pixel operation (blending)  
visibility testing 

!
!
Data parallelism (SIMD) 

- triangles and pixels processed in parallel 
-> massively parallel architectures with thousands of cores 

!
!
!

          

} not available in CUDA/OpenCL



AMNH Planetarium Show: “Dark Universe” (2013), narrated by Neil deGrasse Tyson, 
Gravitational Lensing Scene (Kaehler, Emmart, Abel)



Background Galaxies: 
 Halos from Millenium XXL Simulation (Angulo et al.)



Gravitational Lensing: 
 Computed in Fragment Shader assuming NFW profile



Foreground Galaxies: 
 Time-dependent 3D models 
 Extracted from Enzo Simulation (Kim et al.) using Halo Finder



Rendering for American Museum of Natural History Show “The Big Bang”, Narrated by Liam Neeson 
Kaehler, Kim, Abel (Stanford/SLAC) 



LENSING SCENE

rendered with 100 MPixel resolution 

!
more than 1 TByte of image data



VISUALIZATION OF N-BODY DARK MATTER 
SIMULATIONS USING RASTERIZATION GRAPHICS



DENSITY PROJECTIONS

�
proj

=

Z
�(x)dx

Integrated density along line-of-sight 

!
!
!
!

�
proj

=

Z
�(x)dx



DENSITY PROJECTIONS

!
!
!

Estimation of Dark Matter Densities between tracers ? 

!
!
!



Kernel smoothing (SPH) 

density around tracer estimated by volume of sphere of n-nearest neighbors 

smoothed by kernel profile centered at particle’s position  

Box filter, Gaussian, Cubic-splines, ... 

!
see e.g. Monaghan [1998], Fraedrich et al. [2009]

DENSITY PROJECTIONS



Simulation data: Hao-Yi Wu (Stanford), Oliver Hahn (Stanford), Risa Wechsler (Stanford) 



Problems 

to much smoothing

DENSITY PROJECTIONS

Kaehler, Hahn, Abel [2012]



noise in under-dense regions

Problems 

DENSITY PROJECTIONS

Kaehler, Hahn, Abel [2012]



Tessellation of Dark Matter Sheet in Phase-Space  

Abel, Hahn, Kaehler [2011]  

!
!
Initial Conditions: 

Tracers placed on regular grid  

!
Pairs of tracers define cells 

!

TESSELLATION
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TESSELLATION

Assumption: same amount of mass per cell 

v

x

tracers define cells

...

c0 c1 cn-1...



TESSELLATION

Connectivity constant over time  

!
Motion of tracers deforms cells 

!
Densities change over time v
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TESSELLATION

Mass density computation: 

project cells into position space

v

x
c0

c1

c2

c3

... cn-1

1 DM stream



TESSELLATION

Mass density computation: 

project cells into position space

v

x
c0

c1

c2

c3

... cn-1

3 DM streams



TESSELLATION

Mass density computation: 

project cells into position space
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1 DM stream



TESSELLATION

y

x

Time 1   <  Time 2     <  Time 3



TESSELLATION

Subdivision of cubical cells by tetrahedra 

always convex 

!

Freudenthal Triangulation[1942] 

6 Tetrahedra per Cube



Tetrahedra defined by triangles, so let’s use rasterization graphics 



Large number of tetrahedral elements 

5123 tracer particles ⇒ 8×108 tetrahedra 

!

PROBLEMS



Large number of tetrahedral elements 

5123 tracer particles ⇒ 8×108 tetrahedra 

!
Memory requirements for 5123 tracer particles  

positions:      1.5 GBytes 

densities:         3 GBytes 

connectivity: ~17 GBytes  

PROBLEMS



GPU-BASED DENSITY PROJECTION APPROACH 

Features 

 no-connectivity information transferred between CPU and GPU 

 no preprocessing: 

  geometries of tets constructed on-the-fly on GPU 

  densities of tets computed on-the-fly on GPU 

!
Kaehler, Hahn, Abel [2012]



GPU PROCESSING

VERTEX SHADER
one instance per cell (instanced rendering) 
samples cell’s vertices 

GEOMETRY SHADER
computes volume & density of tetrahedra 
6 invocations per vertex shader instance

3D TEXTURE 

!
Tracer positions stored in 3D RGB texture 

Texel coordinate based on position at initial time

GPU



!
Memory requirements for 5123 tracer particles  

positions:      1.5 GBytes 

densities:         3 GBytes 

connectivity: ~17 GBytes  

DATA STORAGE 



DISTRIBUTED RENDERING

Texture split in ‘bricks’ 

!
Bricks share data layer on faces 

!
Bricks rendered on separate node 

!
Compositing of partial results



RESULTS

SPH kernel smoothing Phase-Space Tessellation:  
cell-projection approach

Kaehler, Hahn, Abel [2012]



“Dark Universe” Planetarium Show

Courtesy of D. Finnin, American Museum of Natural History



LARGE-SCALE-STRUCTURE SCENE

Simulation: 

 2300 time steps 

 768^3 tracers (256^3 run replicated 27 times) 

!
Rendering: 

 16 billion triangles per snapshot 

 24 MPixel resolution 

  

Hardware: 

 Single Workstation with Nvidia Quadro 4000 card 



Gravitational Lensing Scene for AMNH Planetarium Show: “Dark Universe” (2013) , (Kaehler, Emmart, Abel, Hahn)



GPU-Based Direct Volume Rendering of  
Adaptive Mesh Refinement Data



DIRECT VOLUME RENDERING

Assign emission and absorption coefficient to data samples 

!
Display resulting light intensity in image plane 

!
!
—> Solve radiation transfer equation 

 

⇤

⇤s
I(x,n, ⇥) = ��(x,n, ⇥)I(x,n, ⇥) + q(x,n, ⇥)



Assumption: no scattering 

!
!
!
!
!
!
Simplified Transfer Equation

I(s) = I(s0)e��(s0,s) +
� s

s0

q(s⇥)e��(s�,s)ds⇥

⇥(s0, s1) :=
� s1

s0

�(t)dt



STRUCTURED AMR

Refined regions overlap coarse ones 
!
!
!

!



Problem of overlapping regions

Decomposition of data domain 

 Adaptive kD-tree  

 Nodes consist of non-overlapping boxes 

 No visibility cycles 

!
Supports front-to-back / back-to-front traversal 

!
!

Kaehler, Hege [2002]



“Slice-Based” Direct Volume Rendering

Exploit GPU support for filtering and blending 

!
Traverse kD-tree on CPU 

!
For each node at sufficient resolution: 

 Upload data block as 3D texture  

 Extraction of slices using texture hardware 

 Blending into frame buffer 

!
!

Kaehler, Hege [2002]



Animation for Discovery Channel Television Show: “The Unfolding Universe” (2002) 
Visualization: R. Kaehler (KIPAC), D. Cox (NCSA), R. Patterson (NCSA), S.Levy (NCSA) 
Numerical Simulation: T. Abel  (KIPAC)
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GPU-BASED RAYCASTING 

Traverse kD-tree on CPU 

!
For each node at sufficient resolution: 

 Render front faces of domain 

 Instance of fragment shader for each covered pixel 

  Compute ray-direction 

  Sampling and color mapping 

!
Display resulting pixel intensities  

Kaehler, Wise, Abel, Hege [2008]



Examples

Simulation: Marcelo Alvarez (CITA), Tom Abel (KIPAC/Stanford)Simulation: Jonathan McKinney (UMD), Alexander Tchekhovsky (Princeton) 
and Roger Blandford (Stanford) 

Simulation: John Wise (Georgia Tech), Tom Abel (KIPAC)



AMR Volume Rendering on  
KIPAC’s GPU-CLUSTER

!
!
4 MAC OS nodes 

!
two NVIDIA 6800 cards 

each 

!
12 rendering instances 
in parallel
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GPU-RAYCASTING FOR AMR DATA

complete hierarchy accessible in fragment shader 

(not just single subgrids) 

!
!
allows for advanced shading techniques 

 



GRADIENT-BASED SHADING

On-the-fly Gradient-Computation 
 - reduced GPU memory requirements



On-the-fly Gradient-Computation  

Simulation: William East (KIPAC)



Assumption: no scattering 

!
!
!
!
!
!

⇥(s0, s1) :=
� s1

s0

�(t)dt



One Snapshot from Enzo Simulation by Wise and Abel. 
 100,000 subgrids 
 1 billion cells 

GLOBAL ILLUMINATION FOR AMR DATA



Global Illumination by light source 
computed on-the-fly in fragment shader



Thanks for your attention !


