Berkeley Institute for Data Science (BIDS)

Saul Perlmutter
Department of Physics
University of California, Berkeley

Computational Astrophysics 2014-2020 LBNL March 2014

Data Science throughout campus

WIRED Spark: Open Source Superstar Rewrites
Future of Big Data

BY CADE METZ 06.19.13 6:30 AM

AMP Lab Ion Stoica, CS Michael Franklin, CS

Adam Arkin.

Bioengineering

Charles Marshall

Rosie Gillespie

Integrative Biology

Reconstructing th in your mind

Bin Yu, Statistics **Jack Gallant, Neuroscience**

Richard Allen Earth& Plan. **Science**

The New York Times Incomes Flat in Recovery, but Not for the 1% Feb 15, 2013

Emmanuel Saez, Economics

Great interest from across the campus

Data Science Workshop held in February 2013 was attended by 80 researchers on three days notice; with follow-up events in May and June (to date 280+ signed up for mailing list)

A 5-year, \$37.8 million cross-institutional collaboration

Berkeley Institute for Data Science (BIDS)

Relevance across the campus suggests need for central location that will serve as home for data science efforts

Enhancing strengths of

- Simons Institute for the Theory of Computing
- AMP Lab
- SDAV Institute
- CITRIS
- etc.

Doe Memorial Library @ the heart of UC Berkeley

Initial Data Science Faculty Group

Faculty Lead/PI: Saul Perlmutter, Physics, Berkeley Center for Cosmological Physics

Joshua Bloom, Professor, Astronomy; Director, Center for Time Domain **Informatics**

Henry Brady, Dean, Goldman School of **Public Policy**

Cathryn Carson, Associate Dean, Social Sciences; Acting Director of Social Sciences Data Laboratory "D-Lab"

David Culler, Chair, EECS

Michael Franklin, Professor; EECS, Co-Director, AMP Lab

Fernando Perez, Researcher, Henry H. Wheeler Jr. Brain Imaging Center

Jasjeet Sekhon, Professor, Political Science and Statistics; Center for Causal Inference and Program Evaluation

Jamie Sethian, Professor, Mathematics

Kimmen Sjölander, Professor, Bioengineering, Plant and Microbial **Biology**

Philip Stark, Chair, Statistics

Ion Stoica, Professor, EECS; Co-Director, **AMP Lab**

Initial Data Science Faculty Group

Faculty Lead/PI: Saul Perlmutte. Physics. Berkeley Center for Cosmological Physics

Joshua Bloom, Professo. Astronomy; Director, Center for Time Domain Informatics

Henry Brady, Dean, Goldman School of Public Policy

Cathryn Carson, Associate Dean, social Sciences Acting Director of Social Sciences Data Laboratory "D-Lab"

David Culler, Chair EECS

Michael Franklin, Professo: EECS, Co-Director, AMP Lab

Fernando Perez. Researcher, Henry H. Wheeler Jr Brain Imagine Center

Jasjeet Sekhon, Professor Political Science and Statistics: Center for Causai inference and Program Evaluation

Jamie Sethian, Professor, Mathematics

Kimmen Sjölander, Professor, proengineering, Plant and Microbial Biology

Philip Stark, Chair Statistics

Ion Stoica, Professo . EECS; Co-Director, AMP Lab

DOE "Big Data" Challenges Volume, velocity, variety, and veracity

Biology

- Volume: Petabytes now; computation-limited
- Variety: multi-modal analysis on bioimages

Cosmology & Astronomy:

- Volume: 1000x increase every 15 years
- Variety: combine data sources for accuracy

High Energy Physics

- Volume: 3-5x in 5 years
- Velocity: real-time filtering adapts to intended observation

Materials:

- Variety: multiple models and experimental data
- Veracity: quality and resolution of simulations

Light Sources

- Velocity: CCDs outpacing Moore's Law
- Veracity: noisy data for 3D reconstruction

Climate

- Volume: Hundreds of exabytes by 2020
- Veracity: Reanalysis of 100-year-old sparse data

We have computing power, we have applied math techniques, we have database approaches, so...

What's missing?

Data Science for academic scientists: What's still needed?

Make it "progressive":

Today, for each project, a new set of students/post-docs writes code that often re-invents previous solutions, to reach a conference/paper/thesis as rapidly as possible.

We must make it easy to

- 1. find the best code/algorithm/approach/tutorial for a given purpose, within your own group, your own discipline, another discipline, industry,...
- 2. contribute and maintain code that could be useful for a larger community

DS for academic scientists: What's still needed?

Easy to see:

- **3. Long term career paths** for crucial members of our science teams who become engaged in the data science side of the work.
- **4. Data science training** for undergraduates, graduate students, and post-docs to quickly come up to speed in research.

DS for academic scientists: What's still needed?

Less obvious:

- 5. Our programming languages and **programming environments** should not distract from the science.
- **6. Bridge the current gaps** between the interests/needs of domain scientists and the interests/needs of data science methodologists.
- 7. Use ethnography to rigorously study what slows the scientists down in their use of data.

DS for academic scientists: What's still needed?

Potential gains:

 Remove/reduce barriers for those who are less data-science savvy than those in this room.

• Data science as a bridge between disciplines and a magnet for in-person human interaction.

Working Groups as Bridges

Bridges Data Science Methodologies Scientific **Discovery Spurs Theme Areas** New Data Science Methodologies Machine Learning **Biological** Sciences **Career Paths and Alternative Metrics** Data Management **Education and Training Environmental** Data Visualization / Sciences Software Tools, Environments, and Support **Usability** Reproducibility and Open Science **Physical** Statistics / Applied Math Sciences **Working Spaces and Culture** Sensors **Ethnography and Evaluation** Social **Sciences Programming** New Data Science Methodologies **Environments** Transform Discovery Scalable Hardware & **Software Systems**

BIDS goals

- Support meaningful and sustained interactions and collaborations between
 - Methodology fields: computer science, statistics, applied mathematics
 - Science domains: physical, environmental, biological, neural, social to recognize what it takes to move all of these fields forward
- Establish new Data Science career paths that are long-term and sustainable
 - A generation of multi-disciplinary scientists in data-intensive science
 - A generation of data scientists focused on tool development
- Build an ecosystem of analytical tools and research practices
 - Sustainable, reusable, extensible, easy to learn and to translate across research domains
 - Enables scientists to spend more time focusing on their science

Supernova (SN):

Large quantities of data need to be analyzed in near-real-time.

In 1982 (first generation CCDs): 150 MB/night

Current: 1.5 TB/night

LSST era (2020): ~50 TB/night processed

Machine Learning, Boosted Decision Trees to find transient SNe, which are needles in haystack of 1 M candidates/night.

SN observations compared to (supercomputer-based) simulations.

Cosmic Microwave Background (CMB):

Exponentially growing data chasing fainter echos:

BOOMERanG: 10⁹ samples in 2000

Planck: 10^{12} samples in 2013 (0.5 PB)

CMBpol: 10^{15} samples in 2025

Uncertainty quantification through Monte Carlos

- Simulate 10⁴ realizations of the entire mission
- Control both systematic and statistical uncertainties

In 2012/13 alone...

Simons Institute for the Theory of Computing

\$60M investment from the Simons Foundation

Opened in newly renovated Calvin Hall in Sep 2013

- Universitic Moore-Sloan Data Science Initiative Lin/Ion Stoica Science Initiative Lin/Ion Science Initia
- Significant data science efforts across many domains, incl. astrophysics, ecoinformatics, seismology, neuroscience, computational biology, social science

Nearly every field of discovery is transitioning from "data poor" to "data rich"

Astronomy: LSST

Physics: LHC

Oceanography: OOI

Sociology: The Web

Biology: Sequencing

Economics: POS terminals

Neuroscience: EEG, fMRI

Exponential improvements in technology and algorithms are enabling a revolution in discovery

- A proliferation of sensors
- The creation of almost all information in digital form
- Dramatic cost reductions in storage
- Dramatic increases in network bandwidth
- Dramatic cost reductions and scalability improvements in computation
- Dramatic algorithmic breakthroughs in areas, such as machine learning