Data-Driven Astronomical Inference

Josh Bloom, UC Berkeley

@profjsb

Computational Astrophysics 2014–2020: Approaching Exascale LBNL 21 March 2014

Inference Space

Bayesian Distance Ladder

Pulsational Variables: Period-Luminosity Relation

$$m_{ij} = \mu_i + M_{0j}$$

$$+ \alpha_j \log_{10} (P_i/P_0)$$

$$i \text{ indexes over individual stars}$$

$$j \text{ indexes over wavebands}$$

$$a \text{ and } b \text{ are fixed constants at each waveband}$$

$$+ E(B - V)_i \times [R_V \times a (1/\lambda_i) + b (1/\lambda_i)]$$

$$+ \epsilon_{ij}$$

Data 134 RR Lyrae (WISE, Hipparcos, UVIORJHK)

Fit 307 dimensional model parameter inference

- deterministic MCMC model
- ~6 days for a single run (one core)
- parallelism for convergence tests

Bayesian Distance Ladder

0.05 0.10 0.15 0.20 0.25 0.30 0.35 $E(B-V)_{\rm Post}$

- Approaching 1% distance uncertainty
- Precision 3D dust measurements

Bayesian Astrometry

Bayesian Astrometry

<u>Step 1:</u> Regress 7-d parametric affine transformation (scale, rotation, shear, etc.)

Fort me on Cithus

<u>Step 2:</u>

Learn a non-parametric distortion map with Gaussian processes

http://berianjames.github.com/pyBAST/

Bayesian Astrometry

Some Clear Benefits

• covariate uncertainties in celestial coordinates

• mapping observed points can incorporate variance throughout image, extending even to highly non-trivial distortion effects

 astrometry can be treated as Bayesian updating, allowing incorporation of prior knowledge about proper motion & parallax

non-parallel Cholesky + MCMC: ~hour for 71 observations

http://berianjames.github.com/pyBAST/

Machine Learned Classification

25-class variable star Data: 50k from ASAS, 810 with known labels (timeseries, colors)

Richards+12

Machine Learned Classification

True Class

74 dimensional feature set for learning

featurization is the bottleneck (but embarrassingly parallel)

Richards+12

.

MACC (50124)

-	Rotational (335)
-	Eruptive (2727)
-	Binary (11236)
4	Pulsating (35826)

ASAS_ID	dotAstro_ID	RA	DEC	Class P_	Class A	nomaly	ACVS_Class	Train_Class	Р	P_signif	N_epochs	٧	c
080940-3810.5	227867	122.415885	-38.174595	Mira		0.040	MIRA=SR	Mira	328.386	20.859	456	7.8	
115501-5915.2	236087	178.762155	-59.258671	Mira		0.075	MIRA		200.167	21.082	339	8.2	
132500-6439.8	238210	201.24495	-64.663232	Mira		0.066	MIRA		350.507	23.531	503	10.34	
161441-3223.5	244080	243.671565	-32.391181	Mira		0.037	MIRA		358.451	16.717	563	9.99	
165413-5615.9	245810	253.55541	-56.265033	Mira 📃		0.033	MIRA	Mira	286.697	16.654	497	9.46	
165538-4506.2	245884	253.907535	-45.102913	Mira		0.040	MIRA		316.996	23.126	402	7.82	
194952+0923.8	258863	297.46893	9.401204	Mira		0.042	MIRA		287.103	12.820	470	10.06	
221800-2936.2	263989	334.501365	-29.604124	Mira		0.055	MIRA		293.459	16.501	415	9.17	
235627-4947.2	265240	359.121555	-49.786453	Mira 📃		0.066	MIRA		266.197	16.322	408	8.69	
044030-3814.2	218251	70.125405	-38.235209	Mira		0.029	MIRA	Mira	390.997	20.138	382	8.98	
070729+0459.1	224085	106.87182	4.986432	Mira		0.050	MIRA		262.462	13.700	480	10.02	
091646-0435.2	230899	139.19409	-4.585538	Mira		0.050	MIRA		268.569	20.205	907	9.56	
094755-6726.9	232018	146.98116	67.451082	Mira		0.092	MIRA.	65550	338.995	18.072	290	10.62	
103823-8046.8	233741	159.6159	30,78,7-1	Mira		0.082	MIRA	(Port	2 0.522	23.139	823	10.1	
120517-5511.2	236361	181.1220	Sta		ABOU	T COI	NTACT	FAQ	8.638	18.337	574	9.75	
121938-1915.3	236646	184.907	19-22-056					Ballmont	17.856	18.677	615	7.83	

Machine-learned varstar catalog: http://bigmacc.info

Doing Science with Probabilistic Catalogs

<u>Demographics</u> (with little followup): trading high purity at the cost of lower efficiency *e.g., using RRL to find new Galactic structure*

<u>Novelty Discovery</u> (with lots of followup): trading high efficiency for lower purity *e.g., discovering new instances of rare classes*

> Discovery of Bright Galactic R Coronae Borealis and DY Persei Variables: Rare Gems Mined from ASAS

A. A. Miller^{1,*}, J. W. Richards^{1,2}, J. S. Bloom¹, S. B. Cenko¹, J. M. Silverman¹,

D. L. Starr¹, and K. G. Stassun^{3,4}

arXiv.org > astro-ph > arXiv:1204.4181

Turning Imagers into Spectrographs

Time variability + colors \rightarrow fundamental stellar parameters

Data: 5000 variables in SDSS Stripe 82 with spectra ~80 dimensional regression with Random Forest

Miller, JSB+14

Big Data Challenge: Time & Resources

Large Synoptic Survey Telescope (LSST) - 2018

Light curves for 800M sources every 3 days 10⁶ supernovae/yr, 10⁵ eclipsing binaries 3.2 gigapixel camera, 20 TB/night

LOFAR & SKA 150 Gps (27 Tflops) → 20 Pps (~100 Pflops)

Gaia space astrometry mission - 2013

1 billion stars observed ~70 times over 5 years Will observe 20K supernovae

Many other astronomical surveys are already producing data: SDSS, i**PTF**, CRTS, Pan-STARRS, Hipparcos, OGLE, ASAS, Kepler, LINEAR, DES etc.,

Big Data Challenge: Time & Resources

Large Synoptic Survey Telescope (LSST) - 2018 Light curves for 800M sources every 3 days How do we do discovery, follow-up, and inference when the data rates (& requisite timescales) Ga preclude human involvement?

Ma SDSS, IPTF, CRTS, Pan-STARRS, Hipparcos, OGLE, ASAS, Kepler, LINEAR, DES etc.,

Towards a Fully Automated Scientific Stack for Transients papers inference current typing state-of-the-art followup stack classification discovery finding reduction observing scheduling strategy automated (e.g. iPTF) not (yet) automated

Friday, March 21, 14

PTF subtractions

<u>Goal:</u> build a framework to discover variable/ transient sources without people

- fast (compared to people)
- parallelizeable
- transparent
- deterministic
- versionable

1000 to 1 needle in the haystack problem

ML Algorithmic Trade-Off

Random Forest is a trademark of Salford Systems, Inc.

10tel SN IIn Real-time Classifications...

OVERVIEW PHOTOMETRY SPECTROSCOPY FOLLOWUP OBSERVABILITY FINDING CHART 🚈 SCANNING

LETTER

doi:10.1038/nature11877

2010 Oct 16 ptfrobot [robotclass_conf]: 3.94

An outburst from a massive star 40 days before a supernova explosion

E. O. Ofek¹, M. Sullivan^{2,3}, S. B. Cenko⁴, M. M. Kasliwal⁵, A. Gal-Yam¹, S. R. Kulkarni⁶, I. Arcavi¹, L. Bildsten^{7,8}, J. S. Bloom^{4,9}, A. Horesh⁶, D. A. Howell^{8,10}, A. V. Filippenko⁴, R. Laher¹¹, D. Murray¹², E. Nakar¹³, P. E. Nugent^{4,9}, J. M. Silverman^{4,14}, N. J. Shaviv¹⁵, J. Surace¹¹ & O. Yaron¹

r >19.9 (204.6 d)	010 Aug 25 ptfrobot [robotclass]: SN/Nova 9000 010 Aug 25 ptfrobot [robotclass]: SN/Nova 9000 010 Aug 25 ptfrobot [type]: Transient copy DM (approximate) = 35.88 (entioned in 7 Email(s)	
ADDITIONAL IN	Tenuoned III / Email(s)	
IPAC NED DS	SIMBAD HEASARC WISE SkyView PyMP PTFInfoBot Extinction	
	Add to Cart	

emiss

Reduc

lind

Seismology

Neuroscience

Classification Platform for Novel Scientific Insight on Time-Series Data

Parting Thoughts

- Astronomy's data deluge demands an abstraction of the traditional roles in the scientific process. Despite automation, crucial (insightful) roles remain for people
- Machine learning is an emerging & useful tool
- Deterministic prediction with verifiable uncertainties is crucial to maximize scientific impact under real-world resource constraints
- Major Challenge: Training & access to great learning frameworks
- In the time-domain, machine-learning *prediction* <u>is</u> the gateway to understanding