
Data-Driven 
Astronomical Inference

Josh Bloom, UC Berkeley

@profjsb

Computational Astrophysics 2014–2020: Approaching Exascale   LBNL 21 March 2014

2Friday, March 21, 14



Bayesian Frequentist

Theory
Driven

Data
Driven

non-parametric

parametric

Inference Space

Hardware   laptops → NERSC
Software   Python/Scipy, R, ...

Carbonware   astro grad students, postdocs
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mij = µi +M0j

+ ↵j log10 (Pi/P0)

+ E(B � V )i ⇥ [RV ⇥ a (1/�i) + b (1/�i)]

+ ✏ij

Bayesian Distance Ladder
Pulsational Variables: Period-Luminosity Relation

i indexes over individual stars
j indexes over wavebands
a and b are fixed constants at each waveband

Data  134 RR Lyrae (WISE, Hipparcos, UVIORJHK)

Fit  307 dimensional model parameter inference
- deterministic MCMC model
- ~6 days for a single run (one core)
- parallelism for convergence tests

Klein+12; Klein,JSB+14,
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4 C. R. Klein et al.

Figure 6. Multi-band period–luminosity relations. RRab stars are in blue, RRc stars in red. Blazhko-a↵ected stars are denoted with

diamonds, stars not known to exhibit the Blazhko e↵ect are denoted with squares. Solid black lines are the best-fitting period–luminosity

relations in each waveband and dashed lines indicate the 1� prediction uncertainty for application of the best-fitting period–luminosity

relation to a new star with known period.

c� 2013 RAS, MNRAS 000, 1–11

Bayesian Distance Ladder

• Approaching 1% 
distance uncertainty

• Precision 3D dust 
measurements
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Fitting for:
Parallax, Proper 
Motion, Binary 
Parameters, 
Microlensing...

Hipparcos: 106 stars
Gaia: ~109 stars

Bayesian Astrometry
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“Distortion map”

Step 1:
Regress 7-d parametric 
affine transformation
 (scale, rotation, shear, 
etc.)

Step 2:
Learn a non-parametric 
distortion map with 
Gaussian processes

http://berianjames.github.com/pyBAST/
James,JSB+14

Bayesian Astrometry
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High Proper Motion WD
in SDSS Stripe 82
204±5 mas/yr

colored by time

non-parallel Cholesky + MCMC: ~hour for 71 observations

http://berianjames.github.com/pyBAST/

• covariate uncertainties in 
celestial coordinates

• mapping observed points can 
incorporate variance throughout 
image, extending even to highly 
non-trivial distortion effects 

• astrometry can be treated as 
Bayesian updating, allowing 
incorporation of prior knowledge 
about proper motion & parallax

Some Clear Benefits

Bayesian Astrometry
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Machine Learned Classification

25-class variable star
Data: 50k from ASAS, 810 with known labels 

(timeseries, colors)

PRRL = 0.94

Richards+12
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Machine Learned Classification

25-class variable star
Data: 50k from ASAS, 810 with known labels 

(timeseries, colors)

PRRL = 0.94

Richards+12

74 
dimensional 

feature set for 
learning

featurization is 
the bottleneck 

(but 
embarrassingly 

parallel)

The Astrophysical Journal Supplement Series, 203:32 (27pp), 2012 December Richards et al.
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Figure 5. Cross-validated confusion matrix for all 810 ASAS training sources. Columns are normalized to sum to unity, with the total number of true objects of each
class listed along the bottom axis. The overall correspondence rate for these sources is 80.25%, with at least 70% correspondence for half of the classes. Classes with
low correspondence are those with fewer than 10 training sources or classes which are easily confused. Red giant classes tend to be confused with other red giant
classes and eclipsing classes with other eclipsing classes. There is substantial power in the top-right quadrant, where rotational and eruptive classes are misclassified
as red giants; these errors are likely due to small training set size for those classes and difficulty to classify those non-periodic sources.
(A color version of this figure is available in the online journal.)

with any monotonically increasing function (which is typically
restricted to a set of non-parametric isotonic functions, such as
step-wise constants). A drawback to both of these methods is
that they assume a two-class problem; a straightforward way
around this is to treat the multi-class problem as C one-versus-
all classification problems, where C is the number of classes.
However, we find that Platt Scaling is too restrictive of a trans-
formation to reasonably calibrate our data and determine that
we do not have enough training data in each class to use Isotonic
Regression with any degree of confidence.

Ultimately, we find that a calibration method similar to the
one introduced by Bostrom (2008) is the most effective for our
data. This method uses the probability transformation

p̂ij =
{
pij + r(1 − pij ) if pij = max{pi1, pi2, . . . , piC}
pij (1 − r) otherwise,

(4)
where {pi1, pi2, . . . , piC} is the vector of class probabilities
for object i and r ∈ [0, 1] is a scalar. Note that the adjusted

probabilities, {p̂i1, p̂i2, . . . , p̂iC}, are proper probabilities in that
they are each between 0 and 1 and sum to unity for each object.
The optimal value of r is found by minimizing the Brier score
(Brier 1950) between the calibrated (cross-validated) and true
probabilities.14 We find that using a fixed value for r is too
restrictive and, for objects with small maximal RF probability,
it enforces too wide of a margin between the first- and second-
largest probabilities. Instead, we implement a procedure similar
to that of Bostrom (2008) and parameterize r with a sigmoid
function based on the classifier margin, ∆i = pi,max −pi,2nd, for
each source,

r(∆i) = 1
1 + eA∆i+B

− 1
1 + eB

, (5)

where the second term ensures that there is zero calibration per-
formed at ∆i = 0. This parameterization allows the amount of

14 The Brier score is defined as B(p̂) = 1/N
∑N

i=1
∑C

j=1(I (yi = j ) − p̂ij )2,
where N is the total number of objects, C is the number of classes, and
I (yi = j ) is 1 if and only if the true class of the source i is j.

11
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http://bigmacc.infoMachine-learned varstar catalog:
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Doing Science with Probabilistic Catalogs

Demographics (with little followup):
    trading high purity at the cost of  lower efficiency
    e.g., using RRL to find new Galactic structure

Novelty Discovery (with lots of  followup):
    trading high efficiency for lower purity
    e.g., discovering new instances of  rare classes  

DRAFT April 20, 2012

Discovery of Bright Galactic R Coronae Borealis and DY Persei

Variables: Rare Gems Mined from ASAS

A. A. Miller1,⇤, J. W. Richards1,2, J. S. Bloom1, S. B. Cenko1, J. M. Silverman1,

D. L. Starr1, and K. G. Stassun3,4

ABSTRACT

We present the results of a machine-learning (ML) based search for new R

Coronae Borealis (RCB) stars and DY Persei-like stars (DYPers) in the Galaxy

using cataloged light curves obtained by the All-Sky Automated Survey (ASAS).

RCB stars—a rare class of hydrogen-deficient carbon-rich supergiants—are of

great interest owing to the insights they can provide on the late stages of stellar

evolution. DYPers are possibly the low-temperature, low-luminosity analogs to

the RCB phenomenon, though additional examples are needed to fully estab-

lish this connection. While RCB stars and DYPers are traditionally identified

by epochs of extreme dimming that occur without regularity, the ML search

framework more fully captures the richness and diversity of their photometric

behavior. We demonstrate that our ML method recovers ASAS candidates that

would have been missed by traditional search methods employing hard cuts on

amplitude and periodicity. Our search yields 13 candidates that we consider

likely RCB stars/DYPers: new and archival spectroscopic observations confirm

that four of these candidates are RCB stars and four are DYPers. Our discovery

of four new DYPers increases the number of known Galactic DYPers from two

to six; noteworthy is that one of the new DYPers has a measured parallax and is

m ⇡ 7 mag, making it the brightest known DYPer to date. Future observations

of these new DYPers should prove instrumental in establishing the RCB con-

nection. We consider these results, derived from a machine-learned probabilistic

1Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA

2Statistics Department, University of California, Berkeley, CA, 94720-7450, USA

3Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

4Department of Physics, Fisk University, 1000 17th Ave. N., Nashville, TN 37208, USA

*E-mail: amiller@astro.berkeley.edu
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Turning Imagers into Spectrographs

Miller, JSB+14

Data: 5000 variables in SDSS Stripe 82 with spectra
   ~80 dimensional regression with Random Forest

Time variability + colors → fundamental stellar parameters

12Friday, March 21, 14



TextBig Data Challenge: Time & Resources

Large Synoptic Survey Telescope (LSST) - 2018 
! Light curves for 800M sources every 3 days
    106 supernovae/yr, 105 eclipsing binaries
     3.2 gigapixel camera, 20 TB/night

LOFAR & SKA
    150 Gps (27 Tflops) → 20 Pps (~100 Pflops)

Gaia space astrometry mission - 2013
    1 billion stars observed ∼70 times over 5 years
       Will observe 20K supernovae

Many other astronomical surveys are already producing data:
SDSS, iPTF, CRTS, Pan-STARRS, Hipparcos, OGLE, ASAS, 
Kepler, LINEAR, DES etc.,

13Friday, March 21, 14



TextBig Data Challenge: Time & Resources

Large Synoptic Survey Telescope (LSST) - 2018 
! Light curves for 800M sources every 3 days
    106 supernovae/yr, 105 eclipsing binaries
     3.2 gigapixel camera, 20 TB/night

LOFAR & SKA
    150 Gps (27 Tflops) → 20 Pps (~100 Pflops)

Gaia space astrometry mission - 2013
    1 billion stars observed ∼70 times over 5 years
       Will observe 20K supernovae

Many other astronomical surveys are already producing data:
SDSS, iPTF, CRTS, Pan-STARRS, Hipparcos, OGLE, ASAS, 
Kepler, LINEAR, DES etc.,

How do we do discovery, 
follow-up, and inference 
when the data rates (& 
requisite timescales) 

preclude human 
involvement?

13Friday, March 21, 14



strategy
scheduling

observing
reduction

finding
discovery

classification
followup

inference

Towards a Fully Automated Scientific Stack
for Transients}current

state-of-the-art
stack

automated (e.g. iPTF)
not (yet) automated

typing

papers
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4 H. Brink et al.

Figure 1. Examples of bogus (top) and real (bottom) thumbnails.
Note that the shapes of the bogus sources can be quite varied,
which poses a challenge in developing features that can accurately
represent all of them. In contrast, the set of real detections is
more uniform in terms of the shapes and sizes of the subtraction
residual. Hence, we focus on finding a compact set of features that
accurately captures the relevant characteristics of real detections
as discussed in §2.2.

candidates. For every real or bogus candidate, we have at
our disposal the subtraction image of the candidate (which
is reduced to a 21-by-21 pixel—about 10 times the median
seeing full width at half maximum—postage stamp image
centered around the candidate), and metadata about the
reference and subtraction images. Figure 1 shows subtrac-
tion thumbnail images for several arbitrarily chosen bogus
and real candidates.

In this work, we supplement the set of features devel-
oped by Bloom et al. (2011) with image-processing features
extracted from the subtraction images and summary statis-
tics from the PTF reduction pipeline. These new features—
which are detailed below—are designed to mimic the way
humans can learn to distinguish real and bogus candidates
by visual inspection of the subtraction images. For conve-
nience, we describe the features from Bloom et al. (2011),
hereafter the RB1 features, in Table 1, along with the fea-
tures added in this work. In §3.1, we critically examine the
relative importance of all the features and select an optimal
subset for real–bogus classification.

Prior to computing features on each subtraction image
postage stamp, we normalize the stamps so that their pixel

values lie between �1 and 1. As the pixel values for real can-
didates can take on a wide range of values depending on the
astrophysical source and observing conditions, this normal-
ization ensures that our features are not overly sensitive to
the peak brightness of the residual nor the residual level of
background flux, and instead capture the sizes and shapes of
the subtraction residual. Starting with the raw subtraction
thumbnail, I, normalization is achieved by first subtract-
ing the median pixel value from the subtraction thumbnail
and then dividing by the maximum absolute value across all
median-subtracted pixels via

IN(x, y) =

⇢
I(x, y)�med[I(x, y)]
max{abs[I(x, y)]}

�
. (1)

Analysis of the features derived from these normalized real
and bogus subtraction images showed that the transfor-
mation in (1) is superior to other alternatives, such as
the Frobenius norm (

p
trace(IT I)) and truncation schemes

where extreme pixel values are removed.
Using Figure 1 as a guide, our first intuition about

real candidates is that their subtractions are typically az-
imuthally symmetric in nature, and well-represented by a
2-dimensional Gaussian function, whereas bogus candidates
are not well behaved. To this end, we define a spherical 2D
Gaussian, G(x, y), over pixels x, y as

G(x, y) = A · exp

⇢
�

1
2


(c

x

� x)2

�

+
(c

y

� y)2

�

��
, (2)

which we fit to the normalized PTF subtraction image, I
N

,
of each candidate by minimizing the sum-of-squared di↵er-
ence between the model Gaussian image and the candidate
postage stamp with respect to the central position (c

x

, c

y

),
amplitude A

1 and scale � of the Gaussian model. This fit
is obtained by employing an L-BFGS-B optimization algo-
rithm (Lu, Nocedal & Zhu 1995). The best fit scale and am-
plitude determine the scale and amp features, respectively,
while the gauss feature is defined as the sum-of-squared dif-
ference between the optimal model and image, and corr

is the Pearson correlation coe�cient between the best-fit
model and the subtraction image.

Next, we add the feature sym to measure the symmetry
of the subtraction image. The sym feature should be small
for real candidates, whose subtraction image tends to have a
spherically symmetric residual. sym is computed by first di-
viding the subtraction thumbnail into four equal-sized quad-
rants, then summing the flux over the pixels in each quad-
rant (in units of standard deviations above the background)
and lastly averaging the sum-of-squares of the di↵erences be-
tween each quadrant to the others. Thus, sym will be large
for di↵erence images that are not symmetric and will be
nearly zero for highly symmetric di↵erence images.

Next, we introduce features that aim to capture the
smoothness characteristics of the subtraction image thumb-
nails. A typical real candidate will have a smoothly varying
subtraction image with a single prominent peak while bogus

1 As subtraction images of real candidates can be negative when
the brightness of the source is decreasing, we allow the Gaussian
amplitude A to take on negative, as well as positive, values.

c
� 2012 RAS, MNRAS 000, 1–16

“bogus”

“real”

PTF subtractions

Goal:
build a framework to 

discover variable/
transient sources 
without people

• fast (compared to people)
• parallelizeable
• transparent
• deterministic
• versionable

1000 to 1 needle in the 
haystack problem
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“Discovery” is Imperfect

Real or Bogus? 5

Fig. 2.— Histogram of a selection of features divided in real (purple) and bogus (cyan) populations. First two newly introduced features
gauss and amp, the goodness-of-fit and amplitude of the Gaussian fit. Then mag ref, the magnitude of the source in the reference image,
flux ratio, the ratio of the fluxes in the new and reference images and lastly, ccid, the ID of the camera CCD where the source was
detected. The fact that this feature is useful at all is surprising, but we can clearly see that there are a higher probability of the candidates
beeing real or bogus on some of the CCDs.

els of performance in the astronomy literature ( | joey:

add refs | ). A description of the algorithm can be found
in Breiman (2001). Briefly, the method aggregates a col-
lection of hundreds to thousands of classification trees,
and for a given new candidate, outputs the fraction of
classifiers that vote real. If this fraction is greater than
some threshold ⌧ , random forest classifies the candidate
as real ; otherwise it is deemed to be bogus.
While an ideal classifier will have no missed detections

(i.e., no real identified as bogus), with zero false positives
(bogus identified as real), a realistic classifier will typi-
cally o↵er a trade-o↵ between the two types of errors. A
receiver operating characteristic (ROC) curve is a com-
monly used diagram which displays the missed detection
rate (MDR) versus the false positive rate (FPR) of a clas-
sifier6. With any classifier, we face a trade-o↵ between
MDR and FPR: the larger the threshold ⌧ by which we
deem a candidate to be real, the lower the MDR but
higher the FPR and vice versa. Varying ⌧ maps out the
ROC curve for a particular classifier, and we can com-
pare the performance of di↵erent classifiers by comparing
their cross-validated ROC curves: the lower the curve the
better the classifier.
A commonly used figure of merit (FoM) for selecting

a classifier is the so-called Area Under the Curve (AUC,
Friedman et al. (2001)), by which the classifier with min-
imal AUC is deemed optimal. This criterion is agnostic
to the actual FPR or MDR requirements for the problem
at hand, and thus is not appropriate for our purposes. In-
deed, the ROC curves of di↵erent classifiers often cross,
so that performance in one regime does not necessarily
carry over to other regimes. In the real–bogus classifica-
tion problem, we instead define our FoM as the MDR at
1% FPR, which we aim to minimize. The choice of this
particular value for the false positive rate stems from a
practical reason: we don’t want to be swamped by bogus
candidates misclassified as real.
Figure 3 shows example ROC curves comparing the

performance on pre-split training and testing sets includ-
ing all features. With minimal tuning, Random Forests
perform better, for any position on the ROC curve, than

6 Note that the standard form of the ROC is to plot the false
positive rate versus the true positive rate (TPR = 1-MDR)

SVM with a radial basis kernel, a common alternative
for non-linear classification problems. A line is plotted
to show the 1% FPR to which our figure of merit is fixed.

Fig. 3.— Comparison of a few well known classification algo-
rithms applied to the full dataset. ROC curves enable a trade-o↵
between false positives and missed detections, but the best classi-
fier pushes closer towards the origin. Linear models (Logistic Re-
gression or Linear SVMs) perform poorly as expected, while non-
linear models (SVMs with radial basis function kernels or Random
Forests) are much more suited for this problem. Random Forests
perform well with minimal tuning and e�cient training, so we will
use those in the remainder of this paper.

3. OPTIMIZING THE DISCOVERY ENGINE

With any machine learning method, there are a
plethora of modeling decisions to make when attempt-
ing to optimize predictive accuracy on future data. Typ-
ically, a practitioner is faced with questions such as which
learning algorithm to use, what subset of features to em-
ploy, and what values of certain model-specific tuning pa-
rameters to choose. Without rigorous optimization of the
model, performance of the machine learner can be hurt
significantly. In the context of real–bogus classification,
this could mean failure to discover objects of tremen-
dous scientific impact. In this section, we describe several
choices that must be made in the real–bogus discovery
engine and outline how we choose the optimal classifica-

Real or Bogus? 5
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deem a candidate to be real, the lower the MDR but
higher the FPR and vice versa. Varying ⌧ maps out the
ROC curve for a particular classifier, and we can com-
pare the performance of di↵erent classifiers by comparing
their cross-validated ROC curves: the lower the curve the
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A commonly used figure of merit (FoM) for selecting

a classifier is the so-called Area Under the Curve (AUC,
Friedman et al. (2001)), by which the classifier with min-
imal AUC is deemed optimal. This criterion is agnostic
to the actual FPR or MDR requirements for the problem
at hand, and thus is not appropriate for our purposes. In-
deed, the ROC curves of di↵erent classifiers often cross,
so that performance in one regime does not necessarily
carry over to other regimes. In the real–bogus classifica-
tion problem, we instead define our FoM as the MDR at
1% FPR, which we aim to minimize. The choice of this
particular value for the false positive rate stems from a
practical reason: we don’t want to be swamped by bogus
candidates misclassified as real.
Figure 3 shows example ROC curves comparing the

performance on pre-split training and testing sets includ-
ing all features. With minimal tuning, Random Forests
perform better, for any position on the ROC curve, than

6 Note that the standard form of the ROC is to plot the false
positive rate versus the true positive rate (TPR = 1-MDR)

SVM with a radial basis kernel, a common alternative
for non-linear classification problems. A line is plotted
to show the 1% FPR to which our figure of merit is fixed.

Fig. 3.— Comparison of a few well known classification algo-
rithms applied to the full dataset. ROC curves enable a trade-o↵
between false positives and missed detections, but the best classi-
fier pushes closer towards the origin. Linear models (Logistic Re-
gression or Linear SVMs) perform poorly as expected, while non-
linear models (SVMs with radial basis function kernels or Random
Forests) are much more suited for this problem. Random Forests
perform well with minimal tuning and e�cient training, so we will
use those in the remainder of this paper.

3. OPTIMIZING THE DISCOVERY ENGINE

With any machine learning method, there are a
plethora of modeling decisions to make when attempt-
ing to optimize predictive accuracy on future data. Typ-
ically, a practitioner is faced with questions such as which
learning algorithm to use, what subset of features to em-
ploy, and what values of certain model-specific tuning pa-
rameters to choose. Without rigorous optimization of the
model, performance of the machine learner can be hurt
significantly. In the context of real–bogus classification,
this could mean failure to discover objects of tremen-
dous scientific impact. In this section, we describe several
choices that must be made in the real–bogus discovery
engine and outline how we choose the optimal classifica-

Brink+2012

Real and Bogus 
objects in our 
training set of 
78k detections, 
42-dimensional 
image and 
context features 
on each 
candidate

but some classifiers work better than others
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ML Algorithmic Trade-Off
High
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Low High
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Accuracy

Linear/Logistic 
Regression

Naive Bayes

Decision Trees

SVMs

Bagging

Boosting

Random Forest®

Neural Nets
Deep Learning

Nearest 
Neighbors

Gaussian/
Dirichlet 

Processes

Splines

* on real-world data sets
Lasso

Random Forest is a trademark of Salford Systems, Inc.
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Real-time Classifications...
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Real-time Classifications...
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cloud. We will design our classification engine to give probabilistic classifications for new time series, al-
lowing users to choose personalized classification thresholds to attain the specified level of false positive
or false negative rate required for their scientific problem. Longer term, we intend to add more sophisti-
cated classification tools such as instance-based dynamic time warping classification [30], semi-supervised
methods that exploit both labeled and unlabeled data for classification [63], and multivariate time-series
classification [28].

2.5. Website. Figure 5 shows some example screenshots of the website. For the web-server, we will use
widely popular high-performance, high-concurrency 9 system; it has a proven capability to do load
balancing, caching, access and bandwidth control. In a nutshell, takes an asynchronous, event-driven
approach, farming out web requests to worker engines that hold identical views of the website.
works well on the elastic cloud compute architecture of Amazon (EC2). Thus, the web-server itself will be
part of the native parallelism that will help make the platform scale to a large number of concurrent users,
data loads, and active computations.
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Compute Features!

Home > My Projects > zooproject1 > feature selection

FIGURE 5. Wireframe screenshots of two pages from the proposed classification website. (left) Homepage
highlighting the four basic steps for learning and application to new data. (right) Feature selection and compu-
tation page for an example project (“zooproject1”) from user “Sally.” Here the user can select certain features to
extract and will be able to upload and use their own feature extraction modules. The parallelism of the platform
is demonstrated by the showing the number of Amazon instances being used to compute features.

In year 1, we will build a “minimal viable product” (MVP) using IPython/GoogleAppEngine. Our
collaboration has extensive experience building user-facing websites with the (free) AppEngine10 We will
also explore the use of the Go and Ruby programming languages for the production version of the site. In
addition to building out an intuitive user experience (as shown in Fig. 5) we will also create a set of APIs
(§2.1) so that the entire learning and application process can be controlled through computer (rather than

9
10For example, we built using AppEngine a data exploration and visualization site ( ) for our probabilistic

catalog of variable stars, constructed using ML on more than 50k stars.
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immediately, then eventually) and we will provide a mechanism for doing so. Indeed, part of the service
that we are proposing to provide is a storage and search repository for public time-series data suitable
for classification7. In this sense, the site may become known as the portal for time-domain datasets (see
also [29]), akin to the (mostly) non-temporal datasets stored at NSF-sponsored UC Irvine Machine Learning
Repository8.

2.3. Feature Extraction. While the meaning encoded in time-series data varies across scientific domains,
the manner in which that meaning is manifest shares great commonality. Typically, similar sets of features
or “attributes” are used to capture latent information in time-series data across disparate scientific fields,
reducing dimensionality (usually) and homogenizing datasets into a fixed-dimensional space [40, 5, 62].
This is the major reason that our proposed classification platform will be “restricted” to time-domain: our
collaboration will provide essential feature-based analytics tools without being experts in every domain
that makes use of the service.

A large number of time-series features will be made available through the classification platform. These
features range from very simple summary statistics of the data to parameters that are estimated via sophis-
ticated model fitting. The most elementary set of features are summaries of the marginal distribution of the
time series, which ignore the time axis altogether. Though simple, features such as the peak-to-peak ampli-
tude, skew, and standard deviation of the time series measurements are often powerful discriminators from
astronomy to biology to musicology (e.g., [50, 35, 33]) and are trivial to compute. In addition, we plan to
compute basic variability metrics, such as summary statistics from the empirical auto-correlation function
and simple point-to-point features meant to capture the time-dependent structure of each time series.

Next, spectral features will be provided to capture the periodic information encoded in each time series.
For evenly-spaced time-series data, Fourier and wavelet-based decompositions can be performed, pulling
out the principal frequencies, amplitudes and phases, among other features extracted from the estimated

7Note that this service would fall under the Data collection and management (DCM) and E-science collaboration environments (ESCE)
rubric; however, DCM and ESCE are not the main perspectives of the proposed effort.

8

FIGURE 4. Schematic of the proposed platform and website interface. Major codebases, all created to work on
commodity cloud computing systems (ie., Microsoft Azure or Amazon EC2), are shown in yellow. Databases
and raw files will be housed on cloud datastores (e.g., Microsoft Azure and Amazon S3). Parallelism of the
platform by project will ensured by the webserver ( ; see below). Speed of feature computation will be
accomplished by on-demand spin-ups of feature extraction workers.
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• Astronomy’s data deluge demands an abstraction of  the 
traditional roles in the scientific process. Despite 
automation, crucial (insightful) roles remain for people

• Machine learning is an emerging & useful tool

• Deterministic prediction with verifiable uncertainties is 
crucial to maximize scientific impact under real-world 
resource constraints

• Major Challenge: Training & access to great learning 
frameworks

• In the time-domain, machine-learning prediction is the 
gateway to understanding

Parting Thoughts
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