

I – Simulating galaxy formation across mass scales and environments

In zoom-in simulations many properties of "field" disk-dominated galaxies and dwarfs can now be explained within LCDM

Does the same recipe (high res + high SF density threshold + blastwave feedback + no AGN feedback) work to explain also massive early type galaxies and galaxies that evolve in denser environments with a variety of assembly histories?

II -Multi-scale gas inflows in galaxies to form and grow massive BHs

At all scales gas needs to lose angular momentum, eg through repeated non-axisymmetric instabilities (Levine et al. 2008; Hopkins & Quatert 2010)

Scale of circumnuclear disk (1 pc - 100 pc - stay tuned for Medling et al. 2013)

- crucial, it feeds the accretion disk, hence the actual accretion flow directed to the black hole

- interplay with large scale dynamics and thermodynamics of galactic scale gas (and stars) because feeding from large scales (eg cold flows, galaxy wide inflows triggered by mergers and dynamical/secular instabilities)

The ARGO project: large-volume zoom-in(s) + particle splitting to reach sub-pc scale resolution (Fiacconi, Feldmann & Mayer in preparation)

Formation of a galaxy group

- virial mass at z=0: $10^{13} M_{\odot}$
- m_{DM}=8x10⁵ M_☉, h_{DM}=250 pc
- $m_{SPH}=2x10^4 M_{\odot}$, $h_{SPH}=120 pc$
- n_{SF}=5 cm⁻³

R. Feldmann, 2012 Fermi National Accelerator Laboratory Simulations with modern SPH (GASOLINE) Hi-res region ~ 1 Mpc at z ~ 3.

Each massive galaxy ($M_{vir} < 10^{11}$ Mo) is as well resolved as the single galaxy in the Eris simulation, i.e by a few million SPH particles (Guedes et al. 2011). Simulation currently at $z \sim 3$ (40 million SPH + star particles, $m_{gas} = 2 \times 10^4$ Mo) -- will be pushed to as low as possible z (1.5 million <u>CPU hrs already</u>)

-- at z ~ 4.5 and z ~3 splitting of SPH particles in selected sub-volumes of most massive galaxies to increase resolution to ~ 2000 Mo in the gas phase (0.1 pc spatial) and follow dynamics of gas inflows in mergers.

-- sub-grid star formation and feedback model (blastwave feedback) as in the Eris simulations (SF density threshold = 5 atoms/cc) + internal energy (and metal) diffusion + GD force to capture mixing and instabilities at fluid interfaces (Wadsley et al. 2008; Shen et al. 2010 - see James Wadsley's talk)

The ARGO project: large-volume zoom-in(s) + particle splitting to reach sub-pc scale resolution (Fiacconi, Feldmann & Mayer in preparation)

Simulations with modern SPH (GASOLINE) Hi-res region ~1 Mpc at z ~ 3.

Each massive galaxy (M_{vir} <~ 10¹¹ Mo) is as well resolved as the single galaxy in the Eris simulation, i.e by a few million SPH particles (Guedes et al. 2011).

-- at z ~ 4.5 and z ~3 splitting of SPH particles (Golvagni et al. 2012) in selected sub-volumes of most massive galaxies to increase resolution to 2000 Mo in the gas phase (0.1 pc softening) and follow dynamics of gas inflows in mergers.

-- sub-grid star formation and feedback model (blastwave feedback) as in the Eris simulations (SF density threshold = 5 atoms/cc) + internal energy (and metal) diffusion + GD force to capture mixing and instabilities at fluid interfaces (Wadsley et al. 2008; Shen et al. 2010 - see James Wadsley's talk) 64x resolution versions of zoom-in simulation of galaxy group formation of Feldmann et al. (2010;2011) which produced massive central early-type central galaxies ($M_{star} > 3 \times 10^{11}$ Mo) and companion galaxies with a variety of morphologies at z=0

Key features:

(a) Yields a population of galaxies in hi-res volume of virialized group halo (~ 1.5 Mpc at z = 0)

The 13 most massive galaxies are at least as massive as ERIS ($M_{star} \sim 10^{10}$ Mo at $z \sim 2$) and equally well resolved ----> highest resolution zoom-in with multiple galaxies (eg ~ 10x higher resolution than AREPO simulations in Marinacci et al. 2013)

(b) One simulation that spawns many

Several galaxies resampled with particle splitting at selected epochs in order to achieve resolution of 2000 Mo and 0.1 pc during interesting phases (eg mergers)

Main Goals:

I - Study the formation of galaxies in a dense environment, including massive early-types, with the same "recipe" (sub-grid physics + resolution) that produced a realistic late-type spiral in the Eris simulations ---> can we produce a "template Hubble sequence"?

In particular assess how much success can be achievded WITHOUT including AGN feedback from a central black hole (note case for central role of AGN feedback in galaxy evolution weaker and weaker – see eg highlights of KITP Black Hole Conference on latest multi-wavelength surveys comparing AGN hosts and non-AGN hosts, eg COSMOS+XMM in Bongiorno et al. 2012)

II – Study multi-scale central gas inflows from kpc to sub-pc scales to make progress on: (a) formation of massive BH seeds in the merger-driven for supermassive+quasi-stars proposed by Mayer et al. (2010) and Bonoli. Mayer & Callegari (2013) and (b) more in general on the fueling of massive BHs (following up on earlier studies by eg Hopkins & Quataert without cosmological ICs)

III - Study star cluster formation and evolution in the dense galactic environment at high redshift ----> connection with origin of nuclear star clusters and possible link between hyperdense star clusters undergoing fast core collapse and massive BH formation (see Davies et al. 2011;2012).

does not evolve – is set at formation •Density within effective radius evolves

because effective radius evolves (galaxies grow inside-out, 70% by accreting stars via mergers, the rest evenly between in-situ SF and secular evolution via e.g. bar instabilities in disk phase)

However galaxies too compact at z=0 relative to typical present-day early-types \rightarrow reminiscent of concentration problem for disk galaxies

Circumnuclear disk formation in cosmological simulations

5 Myr

Last stage of major merger (~1:3) between two galaxies at z ~4.5 (Mvir <~ 10¹¹ Mo)

Gas mass resolution 2000 Mo, spatial resolution 0.1 pc

Simulations with (a) polytropic EOS (adiabatic index in range 1.1–1.4) and (b) cooling/heating, star formation, supernovae feedback, thermal energy and metal diffusion, a new model for radiative trasfer effects in the optically thick regime (Roskar et al. in preparation)

Shown is color-coded density map, starting when the larger scale portion of the galatic disks have been already disrupted by the interaction

