Supermassive Black Hole Growth in Hydrodynamic Simulations

Colin DeGraf Racah Institute of Physics Hebrew University of Jerusalem

UCSC Galaxy Workshop/ AGORA Workshop August 16, 2013

Outline

- Numerical Implementation
- Quasar Populations
- Black Hole Growth
- Scaling Relations

Collaborators: T. Di Matteo, N. Khandai, Y. Feng, R. Croft A. Dekel, J. Gabor, F. Bournaud

Simulation

(Image by Y. Feng)

Simulation - MassiveBlack

- Code: PetaGADGET
 - SPH, cooling, SF, feedback, BHs
- Particle Number: 2*3200³ ~ 64 billion
- Box Size: 533 h⁻¹ Mpc
- Resolution:
 - 5 h⁻¹ kpc
 - $m_{dm} = 2.8*10^8 M_{\odot}, m_{gas} = 5.6*10^7 M_{\odot}$
- Run on ~ 100K compute cores on Kraken at NICS

Simulation team: N. Khandai, T. Di Matteo, C. DeGraf, Y. Feng, R. Croft, V. Springel

Simulation - BH implementation

 FoF-based seeding: 5*10⁵ M₀ BH seeded into 5*10¹⁰ M₀ halo

Simulation - BH implementation

 FoF-based seeding: 5*10⁵ M_☉ BH seeded into 5*10¹⁰ M_☉ halo

• BH growth follows (with imposed eddington limit) $\dot{M}_B = 4\pi \frac{(GM_{BH})^2}{(c_s^2 + V_{rel}^2)^{3/2}}\rho$

Simulation - BH implementation

 FoF-based seeding: 5*10⁵ M_☉ BH seeded into 5*10¹⁰ M_☉ halo

• BH growth follows (with imposed eddington limit) $\dot{M}_B = 4\pi \frac{(GM_{BH})^2}{(c_s^2 + V_{rel}^2)^{3/2}}\rho$

- BH feedback via thermal coupling:
 - $E_{feedback} = f(\eta Mc^2)$
 - *f*=5%, η=10%

(Image by Y. Feng)

Sample accretion histories

Outline

- Numerical Implementation
- Quasar Populations
- Black Hole Growth
- Scaling Relations

(DeGraf+ 2012)

(DeGraf+ 2012)

(DeGraf+ 2012)

Outline

- Numerical Implementation
- Quasar Populations
- Black Hole Growth
- Scaling Relations

How do BHs get so large?

Observations find BHs at 10⁹ M_{sun} by z~7

How do BHs get so large?

 Observations find BHs at 10⁹ M_{sun} by z~7 Even with exponential growth, this is challenging to explain

$$M_{BH} = M_{seed} e^{t/t_{edd}}$$

 $t_{edd} \approx 50 Myr$

How do BHs get so large?

 Observations find BHs at 10⁹ M_{sun} by z~7 Even with exponential growth, this is challenging to explain

$$M_{BH} = M_{seed} e^{t/t_{edd}}$$
$$t_{edd} \approx 50 Myr$$

•
$$M_{seed} = 100 - 10^5 M_{sun}$$

 $\rightarrow 10 - 16 e$ -foldings to $10^9 M_{sun}$
 $\rightarrow 0.5 - 0.8 Gyr$

(Di Matteo+ 2012)

(Di Matteo+ 2012)

Black Hole Growth

Black Hole Growth

- Temperature history of accreting gas particles
 - Fall in cold
 - Heated once within 10 kpc

(Di Matteo+ 2012)

Black Hole Growth

Clear peak in growth rate

Evolution of Growth Rate

(DeGraf+ 2012)

Eddington Ratio Distribution

- Eddington ratio follows log-normal distribution
 - σ = 0.39

$$P(\lambda|M_{BH},z) = \frac{1}{\lambda \sigma_m \sqrt{2\pi}} e^{\frac{-(\ln(\lambda) - \mu_m)^2}{2\sigma_m^2}}$$

(DeGraf+ 2012)

Eddington Ratio Distribution

- Eddington ratio follows log-normal distribution
 - σ = 0.39

Outline

- Numerical Implementation
- Quasar Populations
- Black Hole Growth
- Scaling Relations

M- σ Relation

(McConnell & Ma 2013)

High-z M- σ Relation

High-z M-\sigma Relation

High-z M- σ Relation

M-σ: Impact of galaxy mergers

M-σ: Impact of galaxy mergers

- Galaxy merger
 causes jump in σ
- BH undergoes rapid growth, delayed ~100 Myr relative to jump in σ

Future Directions

High-resolution galaxies

 Growth dominated by small, dense gas clouds

- Lower-resolution runs miss bursts of rapid accretion
 - Must be addressed in cosmological simulations

Conclusions

- Direct incorporation of BHs wellreproduces quasar populations
- BH growth evolves as local gas density
- BH growth well-described by M_{BH}dependent gaussian distribution
 - Suppressed above a characteristic mass scale
- High-z M-σ slightly steeper than local relation - generally L_{BH}-independent