The Quenching of Star Formation: Structure vs. Halo

Joanna Woo The Hebrew University of Jerusalem (HUJI)

Avishai Dekel (HUJI) Sandra Faber (UCSC) David Koo (UCSC) et al.

Galaxy Formation Workshop, UCSC, 12 Aug. 2013

Quenching Models

Centrals:

- Virial shock heating in halos > $M_{\rm crit} \sim 10^{12} \,\mathrm{M_{\odot}}$ Halo
- AGN heating
- Gaseous inflow to a compact bulge \rightarrow starburst \rightarrow gas exhaustion

Galaxy + Halo

Galaxy

- Major mergers
- Inflow within gravitationally unstable disc
- Morphological quenching: bulge stabilises the disc

Satellites:

- Ram pressure stripping: gas (strangulation)
- Tidal stripping: gas and stars
- Harrassment: high speed interactions

Description of Data

- SDSS DR7: 0 < z < 0.2
- Quenching = low SFR; $\sigma \sim 0.2$ dex
 - Brinchmann et al. (2004) (spectral lines + photometry)
 - Incorporates dust model
- Mass
 - $M_*: \sigma \sim 0.1$ dex MPA (Brinchmann et al.) (photometry)
 - $M_{\rm h}$: $\sigma \sim 0.3$ dex, Group catalogue of Yang et al. (2012)
 - Centrals vs. Satellites:
 - Central = Most massive member AND nearest to mass-weighted centre
 - Satellite distance from the central galaxy $D = d_{proj}/R_{vir}$: $\sigma \sim 0.1$ dex
- Morphology/structure: 0 < z < 0.075
 - Central surface density $\Sigma_{1 \text{kpc}}$: $\sigma \sim 0.1 \text{ dex}$
 - PSF corrections via Fourier quotient method

Mass vs. Morphology: Centrals

Woo et al., in preparation

Woo et al., (very preliminary)

Interpretation of Results

- Proposition:
 - Increase of f_{a} is related to the transfer across bimodality; quick
 - Decrease of SSFR is related to the *slower* fading of star formation
- Therefore $\Sigma_{1 \text{kpc}}$ -quenching is fast and M_{h} -quenching is slow

Interpretation of Results

- Proposition:
 - Increase of f_{a} is related to the transfer across bimodality; quick
 - Decrease of SSFR is related to the *slower* fading of star formation
- Therefore $\Sigma_{1 \text{kpc}}$ -quenching is fast and M_{h} -quenching is slow
- Makes sense because:
 - Virial shock heating is expected to cut off accretion; remaining gas is expected to continue forming stars
 - Timescales can be \sim 2-3 Gyr or higher at higher z
 - Mechanisms that result in high $\mathcal{\Sigma}_{\rm 1kpc}$ are expected to be violent (VDI, mergers)
 - Once gas is consumed M_h could play maintenance role of quenching (prevents new gas from falling in)
- These ideas need to be tested initial tests in a SAM look promising!

Quenching and Morphology: Satellites

SDSS Satellites; 1 kpc > PSF width Intermediate Halo Inner Halo Outer Halo $\log \sum_{1 \rm kpc} (\rm M_{\odot} \ \rm kpc^{-2})$ 0.8 10 ⁻raction 0.0 0.2 0.4 Quenched 8.5 Inner Halo Intermediate Halo \cap 12 12 13 14 15 12 13 15 13 14 15 14 $\log M_{\rm h} ({\rm M}_{\odot})$

The quenched fraction depends on $\Sigma_{1 \text{kpc}}$ in the outskirts of halos. The quenched fraction depends on M_{h} in the inner halo. Almost all satellites are quenched above $10^{12.8} \text{ M}_{\odot}$

Woo et al., in preparation

Quenching Results for Satellites

- Outer regions of haloes:
 - $-\Sigma_{1 \rm kpc}$ dominates $f_{\rm q}$
 - Satellites only recently fell in; have not had time to experience the slow halo quenching
 - Ie, galaxies on the slow mode can move onto the fast mode Inner regions of haloes:
 - $M_{\rm h}$ dominates $f_{\rm q}$
 - Almost all satellites are quenched for $M_{\rm h} > 10^{12.8} \,{\rm M}_{\odot}$
 - slightly greater than $M_{\rm crit}$ perhaps due to quenching delay

Summary

Quick transition

Slow fading of star formation

- Both the halo and central density play role in quenching
 - $\Sigma_{1 \text{kpc}}$ determines f_{q}
 - $M_{\rm h}$ determines SSFR
- Satellites:
 - $M_{\rm h}$ quenching happens in the inner halo (since halo quenching is slow)
 - Nearly all quenched above a few M_{crit}
 - Σ_{1kpc} -related quenching (fast mode) affects satellites in outer halo