FLASH Code Tutorial

part V special features

Robi Banerjee Hamburger Sternwarte <u>banerjee@hs.uni-hamburg.de</u>

- "Features" so far:
- gravity solvers
 - multi-pole
 - multi-grid
 - BHTree
- particles
 - sinks
- radiation module
 - MGD
 - ray-trace + ionising radiation

• multi-species \implies with individual properties

Property Name	Description	Data type
Α	Number of protons and neutrons in nucleus	real
Z	Atomic number	real
N	Number of neutrons	real
E	Number of electrons	real
BE	Binding Energy	real
GAMMA	Ratio of heat capacities	real
MS_ZMIN	Minimum allowed average ionization	real
MS_EOSTYPE	EOS type to use for MTMMMT EOS	integer
MS_EOSSUBTYPE	EOS subtype to use for MTMMMT EOS	integer
MS_EOSZFREEFILE	Name of file with ionization data	string
MS_EOSENERFILE	Name of file with internal energy data	string
MS_EOSPRESFILE	Name of file with pressure data	string
MS_NUMELEMS	Number of elements comprising this species	integer
MS_ZELEMS	Atomic number of each species element	$\operatorname{array}(\operatorname{integer})$
MS_AELEMS	Mass number of each species element	$\operatorname{array}(\operatorname{real})$
MS_FRACTIONS	Number fraction of each species element	$\operatorname{array}(\operatorname{real})$
MS_OPLOWTEMP	Temperature at which cold opacities are used	real

source/Multispecies/MultispeciesMain
 initialise properties: Simulation_initSpecies.F90

```
#include "Multispecies.h"
#include "Flash.h"
```

- ! These two variables are defined in the Config file as ! SPECIES SF6 and SPECIES AIR
 - call Multispecies_setProperty(SF6_SPEC, A, 146.)
 - call Multispecies_setProperty(SF6_SPEC, Z, 70.)
 - call Multispecies_setProperty(SF6_SPEC, GAMMA, 1.09)
 - call Multispecies_setProperty(AIR_SPEC, A, 28.66)
 - call Multispecies_setProperty(AIR_SPEC, Z, 14.)

call Multispecies_setProperty(AIR_SPEC, GAMMA, 1.4)
end subroutine Simulation_initSpecies

 Material properties physics/materialProperties

works with HD & MDH

- Viscosity/ViscosityMain
 - Constant
 - Spitzer thermal viscosity $\implies v \propto T^{5/2}$
- MagneticResistivity/MagneticResistivityMain \Rightarrow so far: only Constant η

 Material properties physics/materialProperties

works with HD & MDH

- thermal Conductivity/ConductivityMain
 - Constant
 - SpitzerHighZ

⇒ for electron conductivity (e.g. HEDP experiments)

$$K_{\rm ele} = \left(\frac{8}{\pi}\right)^{3/2} \frac{k_B^{7/2}}{e^4 \sqrt{m_{\rm ele}}} \left(\frac{1}{1+3.3/\bar{z}}\right) \frac{T_{\rm ele}^{5/2}}{\bar{z} \ln \Lambda_{ei}}$$

• **Relativistic** hydrodynamics:

 \rightarrow e.g. AGN jets: Lorentz-factor ~ 45

physics/Hydro/HydroMain/split/RHD

(A. Mignione)

- h: enthalpy, $\Gamma:$ specific heat ratio
- $\gamma = \left(1-oldsymbol{v}^2
 ight)^{-1/2}$

\rightarrow use relativistic units: c = 1

 Relativistic hydrodynamics: physics/Hydro/HydroMain/split/RHD

RHD Sod

RHD Riemann2D

 Relativistic hydrodynamics: physics/Hydro/HydroMain/split/RHD

RHD_Sod

RHD_Riemann2D

 \rightarrow no RMHD yet

• **Cosmology** unit:

physics/Cosmology/CosmologyMain

use co-moving variables:

$$\begin{split} \rho &\equiv a^{3}\tilde{\rho} & \longrightarrow & \frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \\ p &\equiv a\tilde{p} & \frac{\partial\rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla p + 2\frac{\dot{a}}{a}\rho \mathbf{v} + \rho \nabla \phi = 0 \\ T &\equiv & \frac{\tilde{T}}{a^{2}} & \frac{\partial\rho E}{\partial t} + \nabla \cdot [(\rho E + p)\mathbf{v}] + \frac{\dot{a}}{a}[(3\gamma - 1)\rho\epsilon + 2\rho v^{2}] + \rho \mathbf{v} \cdot \nabla \phi = 0 \\ \rho\epsilon &\equiv & a\tilde{\rho}\tilde{\epsilon} & \frac{\partial\rho\epsilon}{\partial t} + \nabla \cdot [(\rho\epsilon + p)\mathbf{v}] - \mathbf{v} \cdot \nabla p + \frac{\dot{a}}{a}(3\gamma - 1)\rho\epsilon = 0 \\ \vdots \text{ scale factor} & \nabla^{2}\phi = \frac{4\pi G}{a^{3}}(\rho - \bar{\rho}) \end{split}$$

~ variables: physical variables

a(t)

$$\Rightarrow$$
 terms $\propto \frac{\dot{a}}{a}$ are source terms

• Cosmology unit:

Cosmology_solveFriedmannEqn

- \Rightarrow compute the scale factor a(t)
 - \rightarrow using a 4th order Runge-Kutta with

$$H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left(\frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{r}}{a^{4}} + \Omega_{\Lambda} - \frac{\Omega_{c}}{a^{2}}\right) ; \ \bar{\rho} \quad \equiv \quad \Omega_{m} \rho_{\text{crit}}$$

 H_0 : today's Hubble parameter [1/sec]

curvature: $\Omega_c \equiv \Omega_m + \Omega_r + \Omega_\Lambda - 1$

• Cosmology unit:

runtime parameters

Parameter	Type	Default	Description			
useCosmology	BOOLEAN	.true.	True if cosmology is to be used in this simula-			
			tion			
OmegaMatter	REAL	0.3	Ratio of total mass density to critical density			
			at the present epoch (Ω_m)			
OmegaBaryon	REAL	0.05	Ratio of baryonic (gas) mass density to crit-			
			ical density at the present epoch; must be			
			\leq OmegaMatter (Ω_b)			
CosmologicalConstant	REAL	0.7	Ratio of the mass density equivalent in the cos-			
			mological constant to the critical density at the			
			present epoch (Ω_{Λ})			
OmegaRadiation	REAL	5×10^{-5}	Ratio of the mass density equivalent in radia-			
			tion to the critical density at the present epoch			
			(Ω_r)			
HubbleConstant	REAL	$2.1065 imes 10^{-18}$	Value of the Hubble constant H_0 in sec ⁻¹			
MaxScaleChange	REAL	HUGE(1.)	Maximum permitted fractional change in the			
			scale factor during each timestep			
65 km/sec/Mpc						

• Cosmology unit:

one test setup: Pancake

⇒ Zeldovich (1970) analytic solution of a collapsing ellipsoid in an expanding background

 \Rightarrow collapses first along the short axis \Rightarrow pancake structure

- Collisionless plasma: charged particles **PIC** (particle in cell)
 - \Rightarrow continuous MHD description breaks down for large ion gyroradius $r_{\rm gyr} \approx m_{\rm ion} v / q B$ compared to the system size, e.g. solar magnetosphere

 \rightarrow in FLASH

Particles/ParticlesMain/active/charged/HybridPIC

- \rightarrow charged ion particles within a continuous fluid
 - \Rightarrow computational less expensive than pure multispecies particle simulations

Particles/ParticlesMain/active/charged/HybridPIC

• coupling via Lorentz force:

$$\frac{d\mathbf{r}_{i}}{dt} = \mathbf{v}_{i}, \quad \frac{d\mathbf{v}_{i}}{dt} = \frac{q_{i}}{m_{i}} \left(\mathbf{E} + \mathbf{v}_{i} \times \mathbf{B} \right), \quad i = 1, \dots, N_{I}$$
$$\mathbf{E} = \frac{1}{\rho_{I}} \left(-\mathbf{J}_{I} \times \mathbf{B} + \mu_{0}^{-1} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} \right) - \nabla p_{e} \quad ; \quad \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

 $ho_{
m I}$: ion density, $J_{
m I}$: ion current, $p_{
m e}$: electron pressure

- Grid_mapParticlesToMesh
 map particle mass and charge to mesh
- Grid_mapToMeshParticles
 interpolate mesh fields to particle position

Particles/ParticlesMain/active/charged/HybridPIC

- mapping schemes:
 - linear interpolation (Cloud-in-Cell):
 - ⇒ Particles/ParticlesMapping/CIC
 - Particles/ParticlesMapping/Quadratic
- advancing:
 - Euler, RK, Midpoint, ...
- time scales:
 - due to velocity: $\Delta t \max_i(|\mathbf{v}_i|) < \Delta x$
 - due to plasma waves:

$$\Delta t < \frac{\Omega_i^{-1}}{\pi} \left(\frac{\Delta x}{\delta_i}\right)^2 \sim \frac{n}{B} \left(\Delta x\right)^2, \qquad \delta_i = \frac{1}{|q_i|} \sqrt{\frac{m_i}{\mu_0 n}}$$

• Collisionless plasma: charged particles PIC

\Rightarrow particle properties:

Variable	Type	Default	Description
pt_picPname_1	STRING	"H+"	Specie 1 name
$pt_picPmass_1$	REAL	1.0	Specie 1 mass, m_i [amu]
$pt_picPcharge_1$	REAL	1.0	Specie 1 charge, q_i [e]
$pt_picPdensity_1$	REAL	1.0	Initial n_I specie 1 $[m^{-3}]$
$pt_picPtemp_1$	REAL	1.5e5	Initial T_I specie 1 [K]
pt_picPvelx_1	REAL	0.0	Initial \mathbf{u}_I specie 1 [m/s]
pt_picPvely_1	REAL	0.0	
$pt_picPvelz_1$	REAL	0.0	
$pt_picPweight_1$	REAL	1.0	Real particles per macro-
			particle of specie 1

\Rightarrow example: Plasma

FLASH code: developments

- FLASH: ongoing developments
 - chemistry: coupling with KROME (S. Bovino & D. Seifried)
 - radiation transfer
 - ⇒ extend point source ray-trace using parallel rays for photon scattering (L. Buntemeyer)
 - implementation of TreeCol (Paul Clark & Simon Glover)
 ⇒ get column density for external radiation

Disc Formation in Turbulent Cloud Cores

Robi Banerjee University of Hamburg

Co-Worker: **Daniel Seifried** (Hamburg), Ralph Pudritz (McMaster), Ralf Klessen (ITA)

ISSAC 2013, Robi Banerjee

Star Formation: Early-type discs

Observations of Class 0 protostellar discs: Tobin et al. 2012

ISSAC 2013, Robi Banerjee

Magnetic Fields

Magnetic Fields

magnetic criticality

mass-to-flux ratio:

$$\mu \equiv \left(\frac{M}{\Phi}\right) = \text{self-gravity / magnetic support}$$

critical value:

 $\mu_{\rm crit} = 0.13/\sqrt{G}$

spherical collapsing structure Mouschovias & Spitzer 1976

 $\mu_{\rm crit} = \frac{1}{2\pi\sqrt{G}} \approx 0.16/\sqrt{G}$

uniform disc Nakano & Nakamura 1978

Star Formation: Early-type discs

Collapse of magnetised, rotating cloud cores
stronger magnetic fields: μ < 5 in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \Rightarrow **too** efficient magnetic braking \Rightarrow **no** disc formation

Star Formation: Early-type discs

Collapse of magnetised, rotating cloud cores

• **stronger** magnetic fields: $\mu < 5$ in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \rightarrow **too** efficient magnetic braking \rightarrow **no** disc formation

Angular Momentum Problem II

Solutions?

- flux loss by:
 - Ohmic resistivity (Dapp & Basu 2011,

Krasnopolsky et al. 2010)

- ambipolar Diffusion (Duffin & Pudritz 2008, Li et al. 2011)
- turbulent reconnection (Lazarian & Vishniac 1999, Santos-Lima et al. 2012)
- Hall effect (Krasnopolsky et al. 2011)
- Outflows from small discs

Angular Momentum Problem II

→ Non-ideal MHD and reconnection active only at small scales/high density
→ not effective enough to reduce magnetic braking

⇒ Li, Krasnopolsky & Shang 2011: "The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved"

Parameter study of collapsing cores

Seifried, et al. 2013

Run	$m_{\rm core}$ (M _O)	r _{core} (pc)	μ	Rotation	$\Omega (10^{-13} \text{ s}^{-1})$	$eta_{ ext{turb}}$	Turbulence seed	р	M _{rms}	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	А	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	Α	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	С	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	А	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	Α	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	Α	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence
- resolution: 1.2 AU

Initial angular momentum of cores

 observational evidence for rotating cores (R ~ 0.1 pc) e.g. Goodman et al., 1993:

$$\begin{split} \Omega &\sim 10^{-14} - 10^{-13} \text{ s}^{-1} \\ &\Rightarrow j \sim 10^{21} \text{ cm}^2 \text{ s}^{-1} \\ &\Rightarrow \beta \sim 0.03 \propto (t_{\rm ff} \Omega)^2 \end{split}$$

but: large scatter

• compare to galactic shear flow: $\Omega \sim 10^{-16} - 10^{-15} \text{ s}^{-1}$ \Rightarrow generated by turbulence (Barranco & Goodman, 1998)?

Initial angular momentum of cores?

• Dib et al. 2010:

synthetic observations from simulations overestimate true values by a factor of **8–10**

 \implies also consistent with no global rotation on scales > 0.1 pc

ISSAC 2013, Robi Banerjee

Seifried, RB, Pudritz, Klessen 2012

Seifried, RB, Pudritz, Klessen 2012

 \Rightarrow discs "reappear"

velocity structure

 \Rightarrow only little flux loss

Magnetic field structure

rotation vs. magnetic field orientation → inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

rotation vs. magnetic field orientation ⇒ inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

 $\alpha / 1^{\circ}$

⇒ but no large scale magnetic field component

Summary: Collapse of Turbulent Cores

- Magnetic braking catastrophe only for unrealistic ICs
- is easy to form discs in a turbulent environment
 - ⇒ see also:
 Santos-Lima et al. 2012
 Myers et al. 2013 (Chris' talk on Wednesday)

 \Rightarrow flux loss by turbulent reconnection ? (Lazarian & Vishniac 1999)

Disc Formation in Turbulent Cloud Cores

Robi Banerjee University of Hamburg

Co-Worker: **Daniel Seifried** (Hamburg), Ralph Pudritz (McMaster), Ralf Klessen (ITA)

ISSAC 2013, Robi Banerjee

Star Formation: Early-type discs

Observations of Class 0 protostellar discs: Tobin et al. 2012

ISSAC 2013, Robi Banerjee

Magnetic Fields

Magnetic Fields

magnetic criticality

mass-to-flux ratio:

$$\mu \equiv \left(\frac{M}{\Phi}\right) = \text{self-gravity / magnetic support}$$

critical value:

 $\mu_{\rm crit} = 0.13/\sqrt{G}$

spherical collapsing structure Mouschovias & Spitzer 1976

 $\mu_{\rm crit} = \frac{1}{2\pi\sqrt{G}} \approx 0.16/\sqrt{G}$

uniform disc Nakano & Nakamura 1978

Star Formation: Early-type discs

Collapse of magnetised, rotating cloud cores
stronger magnetic fields: μ < 5 in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \Rightarrow **too** efficient magnetic braking \Rightarrow **no** disc formation

Star Formation: Early-type discs

Collapse of magnetised, rotating cloud cores

• **stronger** magnetic fields: $\mu < 5$ in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

 \rightarrow **too** efficient magnetic braking \rightarrow **no** disc formation

Angular Momentum Problem II

Solutions?

- flux loss by:
 - Ohmic resistivity (Dapp & Basu 2011,

Krasnopolsky et al. 2010)

- ambipolar Diffusion (Duffin & Pudritz 2008, Li et al. 2011)
- turbulent reconnection (Lazarian & Vishniac 1999, Santos-Lima et al. 2012)
- Hall effect (Krasnopolsky et al. 2011)
- Outflows from small discs

Angular Momentum Problem II

→ Non-ideal MHD and reconnection active only at small scales/high density
→ not effective enough to reduce magnetic braking

⇒ Li, Krasnopolsky & Shang 2011: "The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved"

Parameter study of collapsing cores

Seifried, et al. 2013

Run	$m_{\rm core}$ (M _O)	r _{core} (pc)	μ	Rotation	$\Omega (10^{-13} \text{ s}^{-1})$	$eta_{ ext{turb}}$	Turbulence seed	р	M _{rms}	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	А	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	Α	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	С	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	Α	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	А	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	Α	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence
- resolution: 1.2 AU

Initial angular momentum of cores

 observational evidence for rotating cores (R ~ 0.1 pc) e.g. Goodman et al., 1993:

$$\begin{split} \Omega &\sim 10^{-14} - 10^{-13} \text{ s}^{-1} \\ &\Rightarrow j \sim 10^{21} \text{ cm}^2 \text{ s}^{-1} \\ &\Rightarrow \beta \sim 0.03 \propto (t_{\rm ff} \Omega)^2 \end{split}$$

but: large scatter

• compare to galactic shear flow: $\Omega \sim 10^{-16} - 10^{-15} \text{ s}^{-1}$ \Rightarrow generated by turbulence (Barranco & Goodman, 1998)?

Initial angular momentum of cores?

• Dib et al. 2010:

synthetic observations from simulations overestimate true values by a factor of **8–10**

 \implies also consistent with no global rotation on scales > 0.1 pc

ISSAC 2013, Robi Banerjee

Seifried, RB, Pudritz, Klessen 2012

Seifried, RB, Pudritz, Klessen 2012

 \Rightarrow discs "reappear"

velocity structure

 \Rightarrow only little flux loss

Magnetic field structure

rotation vs. magnetic field orientation → inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

rotation vs. magnetic field orientation ⇒ inclined rotation helps to form discs? (Hennbelle & Ciardi 2009, Joos et al. 2012)

 $\alpha / 1^{\circ}$

⇒ but no large scale magnetic field component

Summary: Collapse of Turbulent Cores

- Magnetic braking catastrophe only for unrealistic ICs
- is easy to form discs in a turbulent environment
 - ⇒ see also:
 Santos-Lima et al. 2012
 Myers et al. 2013 (Chris' talk on Wednesday)

 \Rightarrow flux loss by turbulent reconnection ? (Lazarian & Vishniac 1999)