FLASH Code Tutorial

part IV radiation modules

Robi Banerjee Hamburger Sternwarte <u>banerjee@hs.uni-hamburg.de</u>

- The Radiation transfer unit
 - \Rightarrow idea: get solution of the radiation transfer equation

$$\frac{1}{c}\frac{\partial I}{\partial t} + \hat{\mathbf{\Omega}} \cdot \nabla I + \rho \kappa I = \eta$$

- $I(x, \Omega, v, t)$: radiation intensity
- $\kappa(x,v,t)$: opacity [cm²/g]
- $\eta(x,v,t)$: emissivity
- ⇒ so far: no generic coupling to the hydrodynamics (or MHD)
 ⇒ but: possible via 3T module (multiTemp)
 for hydro only

- The Radiation transfer unit
 - \Rightarrow solution via

Multigroup Diffusion (MGD) solver physics/RadTrans/RadTransMain/MGD

 \Rightarrow coupling to electron internal energy

$$\frac{\partial u_e}{\partial t} = \int_0^\infty \mathrm{d}\nu \int_{4\pi} \mathrm{d}\hat{\mathbf{\Omega}}(\rho\kappa I - \eta)$$

• *u*_e : electron internal energy

 \Rightarrow useful for HEDP simulations (LASER beam) \Rightarrow but good starting point for own RT development

• The Radiation transfer unit \Rightarrow multigroup **diffusion** limit with frequency groups: v_g to v_{g+1} :

$$\begin{aligned} \frac{1}{c} \frac{\partial u_g}{\partial t} - \nabla \cdot \left(\frac{1}{3\sigma_{t,g}} \nabla u_g \right) + \sigma_{a,g} u_g &= \sigma_{e,g} a T_e^4 \frac{15}{\pi^4} \left[P(x_{g+1}) - P(x_g) \right] \\ \frac{\partial u_e}{\partial t} &= \sum_g \left\{ \sigma_{a,g} u_g - \sigma_{e,g} a T_e^4 \frac{15}{\pi^4} \left[P(x_{g+1}) - P(x_g) \right] \right\} \end{aligned}$$

- σ_{t,g} : transport opacity
- $\sigma_{a,g}$: absorption opacity
- $\sigma_{e,g}$: emission opacity
- *T*_e : electron temperature

•
$$P(x)$$
 : Planck integral $P(x) = \int_0^x dx' \frac{(x')^3}{\exp(x') - 1}$
 $x = h\nu/k_B T_e$

• The Radiation transfer unit

 \rightarrow discretisation leads to implicit equations

$$\frac{1}{c} \frac{u_g^{n+1} - u_g^n}{\Delta t} - \nabla \cdot \left(D_g^n \nabla u_g^{n+1} \right) + \sigma_{a,g}^n u_g^{n+1} = \sigma_{e,g}^n a(T_e^n)^4 \frac{15}{\pi^4} \left[P(x_{g+1}^n) - P(x_g^n) \right]$$
$$\frac{u_e^{n+1} - u_e^n}{\Delta t} = \sum_g \left\{ \sigma_{a,g}^n u_g^{n+1} - \sigma_{e,g}^n a(T_e^n)^4 \frac{15}{\pi^4} \left[P(x_{g+1}^n) - P(x_g^n) \right] \right\}$$

- $D_g = 1/3\sigma_{t,g}$: diffusion coefficient in the case without flux-limiter
 - → some flux-limiter are available (e.g. min-max)

⇒ solved for each frequency group g using the diffusion unit physics/Diffuse/DiffuseMain ⇒ uses HYPRE library to solve set of linear equations SAC 2013, Robi Banerjee

- The Radiation transfer unit
 - dividing up the multigroup problem:
 - ./setup ... -mgd_meshgroups= N_{mg} \Rightarrow maximum number of groups per **mesh**
 - number of meshes:

runtime parameter $meshCopyCount=N_{mesh}$ (default I)

• at runtime: rt_mgdNumGroups = $N_g \leq N_{mg} \times N_{mesh}$

 \rightarrow domain and frequency decomposition

- The Radiation transfer unit
- \Rightarrow domain and frequency decomposition
- example: $N_{\text{proc}} = 6$, $N_{\text{mesh}} = 2$, $N_{\text{mg}} = 100$

 \Rightarrow number of domain decompositions = $N_{\text{proc}}/N_{\text{mesh}} = 3$

- \Rightarrow divide frequency space by $N_{mg} = 2$
 - ⇒ each process solves multigroup diffusion equation for every other group (i.e. division in odd/even groups)
 - \Rightarrow each process solves for only 50 groups

⇒ **note**: speed-up with mesh-replication must be tested

- The Radiation transfer unit
 - \Rightarrow initialise your setup:
 - specific energy density per group:

$$e_{\rm g} = u_{\rm g}/\rho$$

- $e_{m} = \sum e$ • specific total energy: or
- specific radiation temperature:

$$C_r = \sum_g C_g$$
$$T_r = (u_r/a)^{1/4}$$

 \Rightarrow can be done with:

RadTrans mgdEFromT(blockId, axis, trad, tradActual)

• The Radiation transfer unit \implies initialise your setup:

RadTrans_mgdEFromT(blockId, axis, trad, tradActual)

- trad : desired radiation temperature (input)
- tradActual : actual temperature from integration within group boundaries (output)

• runtime parameters: rt_mgdBounds_1

group limit in eV !

```
\texttt{rt\_mgdBounds}\_N_\texttt{g}
```

 \Rightarrow tradActual must be set to be used in the simulation

• The Radiation transfer unit \implies initialise your setup

```
do k = blkLimits(LOW,KAXIS), blkLimits(HIGH,KAXIS)
   do j = blkLimits(LOW, JAXIS), blkLimits(HIGH, JAXIS)
      do i = blkLimits(LOW,IAXIS),blkLimits(HIGH,IAXIS)
         axis(IAXIS) = i
         axis(JAXIS) = j
         axis(KAXIS) = k
         . . .
                                                                     use actual radiation
         ! Set the secific energy in each radiation group using a
                                                                     temperature
         ! radiation temperature of 1~eV (11604.55~K):
         call RadTrans_mgdEFromT(blockId, axis, 11604.55, tradActual)
         ! Set the radiation temperature:
         call Grid_putPointData(blockId, CENTER, TRAD_VAR, EXTERIOR, axis, tradActual)
         ! Alternatively, we could have set ERAD_VAR using a*(tradActual)**4
      enddo
   enddo
enddo
```

 \Rightarrow initial $u_{g(i)}$ set by $u_{g(i)} \propto T_{rad}^{4} \times (P(x_{g(i)+1}) - P(x_{g(i)}))$

- The Radiation transfer unit \implies initialise your setup
 - set group energies manually

! Set the secific energy in each radiation group: call RadTrans_mgdSetEnergy(blockId, axis, 1, a*sim_trad**4/sim_rho) call RadTrans_mgdSetEnergy(blockId, axis, 2, 0.0) call RadTrans_mgdSetEnergy(blockId, axis, 3, 0.0) call RadTrans_mgdSetEnergy(blockId, axis, 4, 0.0)

 \Rightarrow here: only group I is set: $e_1 = aT_r^4/\rho$

- The Radiation transfer unit
 - \rightarrow opacities:

physics/materialProperties/Opacity

access via:

 \Rightarrow returns $\sigma_{a,g}$, $\sigma_{e,g}$ and $\sigma_{t,g}$

- The Radiation transfer unit
 - possible opacities:
 - constant: ../OpacityMain/Constant
 - tabulated: ../OpacityMain/Multispecies
 - \Rightarrow user provides a table containing $\sigma_g(T_i, \rho_i)$ for each species
 - \Rightarrow module uses a bilinear interpolation to get $\sigma_g(T, \rho)$

- The Radiation transfer unit: Examples:
 - GrayDiffRadShock:
 - ID radiative shock problem (Lowrie 2008)
 - $\implies T_e = T_i$; $T_e \neq T_r$, one frequency group, constant opacity
 - \rightarrow density step function develops to steady state shock

 \Rightarrow "analytic" solution by solving an ODE

• The Radiation transfer unit:

further Examples

• MGDStep : 4 groups, constant opacity \implies initially discontinuous T_e and T_r

• The Radiation transfer unit:

further Examples

• MGDStep : 4 groups, constant opacity \implies initially discontinuous T_e and T_r

 \Rightarrow applicability of MGD for astrophysical problems ?

• The Radiation transfer unit: modules

- Hydro: Responsible for the 3T hydrodynamic update
- Eos: Computes 3T equation of state
- Heatexchange: Implements ion/electron equilibration
- Diffuse: Responsible for implementing implicit diffusion solvers and computes effect of electron conduction
- RadTrans: Implements multigroup radiation diffusion
- Opacity: Computes opacities for radiation diffusion
- Conductivity: Computes electron thermal conductivities
- EnergyDeposition: Computes the laser energy deposition

- **Ray trace** (*Rijkhorst et al.* 2006; *Peters et al.* 2010)
 - solves the radiation transfer equation along rays
 - here: without scattering / diffusion

$$\Rightarrow I(r) = I(0) \exp(-\tau(r))$$

with
$$\tau(r) = a_0 N(r)$$

N(r) : column density \rightarrow integrate $\rho(r)$ along ra₀ : absorption cross section

⇒ calculate the column density N(r): → integrate $\rho(r)$ along r

• Ray trace

long characteristics

short characteristics

- Ray trace
- long characteristics
 - redundant calculations close to the source \Rightarrow slow

- short characteristics
 - \Rightarrow faster
 - \Rightarrow but has difficulties to handle point sources

• ray trace: hybrid characteristics (Rijkhorst et al. 2006)

 local contribution to N(r) using a fast-voxel transversal method based on cell-center values

 interpolated face values that need to be communicated

• ray trace: hybrid characteristics

- ⇒ build list of face values
 for communication
 for each process
 ⇒ similar to
 tree-algorithm
- ⇒ list of patches (blocks) which is traversed by a ray must be known

• ray trace: hybrid characteristics

- ⇒ build list of face values
 for communication
 for each process
 ⇒ similar to
 tree-algorithm
- ⇒ list of *patches* (blocks) which is traversed by a ray must be known

 \rightarrow hybrid characteristics:

- no full ray-trace through the entire box
- only interpolated values of blocks are communicated

• Ray trace (*Rijkhorst et al.* 2006)

 \Rightarrow "patch mapping" of

• original version:

entire grid on highest refinement level was communicated

- ⇒ communication of redundant information
- \Rightarrow strong limitations on max. refinement level ($l_{max} < 7$)
- substantial improvement by T.Peters
 ⇒ only "block tree" is communicated

- Ray trace (*Rijkhorst et al.* 2006) \Rightarrow coupling to ionisation:
- rate equation for hydrogen

$$\frac{\mathrm{d}x(\mathrm{HII})}{\mathrm{d}t} = x(\mathrm{HI})(A_{\mathrm{p}} + A_{\mathrm{c}}) - x(\mathrm{HII})n_{\mathrm{e}}\alpha_{\mathrm{R}}$$

photoionization rate

$$A_{\rm p} = \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_{\nu} \, \mathrm{d}\nu \qquad 4\pi J_{\nu}(r) = \left(\frac{R_{\rm S}}{|r|}\right)^2 \frac{2\pi}{c^2} \frac{h\nu^3}{\exp(\frac{h\nu}{kT_{\rm S}}) - 1} \exp(-\tau(r))$$

collisional ionization rate

$$A_{\rm c} = A_{\rm c}({\rm HI})n_{\rm e}\sqrt{T}\exp(-I({\rm HI})/k_{\rm B}T)$$

radiative recombination rate

$$\alpha_{\rm R} = \alpha_{\rm R} (10^4 \,{\rm K}) \left(\frac{T}{10^4 \,{\rm K}}\right)^{-0.7}$$

I(HI): ionisation potential

- Ray trace (*Rijkhorst et al.* 2006)
 - \Rightarrow coupling to ionisation:
 - photoionisation heating

$$\Gamma_{\rm p} = n({\rm HII}) \int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} a_0 h(\nu - \nu_0) \,\mathrm{d}\nu,$$

- include metal-line cooling
- sub-cycling on thermal timestep \Rightarrow find convergence of x(T) and T(x)

• Ray trace (Rijkhorst et al. 2006)

Examples: "irradiated" clump

• Ray trace (Rijkhorst et al. 2006)

Examples: "irradiated" clumps with two sources

ISSAC 2013, Robi Banerjee

FLASH Code: RT modules

Ray trace (*Rijkhorst et al.* 2006)
 Examples: photo-evaporation of two clumps with photo-ionisation heating

Massive Star Formation: Dynamics of HII Regions

Simulations by Thomas Peters (collapse of 1000 M_{sol} cloud core) \Rightarrow use sink mass to get stellar luminosity and temperature (*Paxton* 2004, ZAMS table)

Disk edge on

Massive Star Formation: Dynamics of HII Regions

Simulations by Thomas Peters (collapse of 1000 M_{sol} cloud core) \Rightarrow use sink mass to get stellar luminosity and temperature (*Paxton* 2004, ZAMS table)

Disk edge on

Massive Star Formation: Dynamics of HII Regions

courtesy: Zilken, NIC, Jülich

ISSAC 2013, Robi Banerjee

Multiple protostars: Dynamics of the H II Region

- ionization feedback does not shut off accretion
- fragmentation-induced starvation (FIS)
- massive stars form in cluster

H II Region Morphologies

H II Region Morphologies

morphologies from De Pree et al. 2005

 Table 3

 Percentage Frequency Distribution of Morphologies

Туре	WC89	K94	Run A	Run B
Spherical/Unresolved	43	55	19	60 ± 5
Cometary	20	16	7	10 ± 5
core-halo	16	9	15	4 ± 2
Shell-like	4	1	3	5 ± 1
Irregular	17	19	57	$21~\pm~5$

Peters et al. 2010b

 only clustered SF match observed statistics

morphology at different viewing angles

Comparison with Observations: Outflows

• Synthetic CO maps with the ALMA simulator CASA @ G5.89-0.39 distance: 1.3 kpc

Comparison with Observations: Outflows

ALMA		(M_{\odot})	V (km s ⁻¹)	P (M_{\odot} km s ⁻¹)	$E_{(10^{44} \text{ erg})}$	L (L_{\circ})	\dot{M} (10 ⁻³ M _o yr ⁻¹)	R (AU)
		(142.0)	(KIII 5)	(11) KII S)	(10 eig)	(20)	(10 140 91)	(AC)
Run A	Blue	0.082 ± 0.000	3.888 ± 0.099	0.320 ± 0.009	0.124 ± 0.007	0.255 ± 0.065	0.206 ± 0.042	4100
	Red	0.101 ± 0.000	3.297 ± 0.154	0.333 ± 0.016	0.109 ± 0.010	0.225 ± 0.066	0.252 ± 0.051	4100
Run B (left)	Blue	0.050 ± 0.000	3.446 ± 0.000	0.171 ± 0.001	0.059 ± 0.000	0.121 ± 0.025	0.124 ± 0.025	3300
	Red	0.141 ± 0.000	2.757 ± 0.184	0.388 ± 0.026	0.106 ± 0.014	0.219 ± 0.073	0.352 ± 0.071	2100
Run B (right)	Blue	0.060 ± 0.000	3.550 ± 0.143	0.213 ± 0.009	0.075 ± 0.006	0.155 ± 0.044	0.150 ± 0.030	5000
	Red	0.044 ± 0.000	2.370 ± 0.000	0.104 ± 0.000	0.024 ± 0.000	0.050 ± 0.010	0.109 ± 0.022	4100

Peters, Klaassen et al. 2012

- → derived outflow parameters are on the **low** end of observations
- → Ionisation feedback is **not** the main driver of molecular outflows
- → common **low mass** companions drive large scale molecular outflows?

 current development: Lars Buntemeyer, Hamburg ⇒ extending ray-trace from point source to multiple plane parallel rays to handle scattering

