The Star Formation/ISM Connection: Feedback and Self-Regulation

Eve Ostriker *Princeton University*

Chang-Goo KimW. OntarioWoong-Tae KimSeoulAdam LeroyNRAOChristopher McKeeU.C. BerkeleyRahul ShettyHeidelberg

1

I. Star formation observations

SF Regulation: a range of time/space scales

- Cosmic infall and internal gas accretion influence long term SF rates, whole-galaxy correlations
 - supply, distribution of gaseous "fuel" within galaxy
 - SF evolution determines stellar distribution (disk/bulge...)
- Keys to setting short term ($\leq t_{orb}$), local rates:
 - local amount of gaseous "fuel"
 - gravity in the disk from gas, stars, DM
 - feedback from SF (heating, momentum injection)

Empirical Star Formation Rates

- On large (kpc →galaxy) scales, the details of SF are averaged into a mean SFR
- Observations of SFRs are often described by empirical Kennicutt-Schmidt (KS) laws:

 $\Sigma_{\rm SFR} = A \Sigma_{\rm gas}^{1+p}$ for $\Sigma_{\rm gas} = \Sigma_{\rm HI}$, $\Sigma_{\rm H2}$, or $\Sigma_{\rm HI} + \Sigma_{\rm H2}$

• index *p* corresponds to $t_{SF,gas} = \Sigma_{gas} / \Sigma_{SFR} \propto \Sigma_{gas}^{-p}$

Kennicutt 1989,1998; Wong & Blitz 2002; Kennicutt et al 2007; Bigiel et al 2008,2010,2011; Leroy et al 2008, 2013; Blanc et al 2009; Genzel et al 2010;Daddi et al 2010; Schruba et al 2011

- Other correlations that have been explored:
 - SFR and orbital time (Ω)
 - SFR and stellar density, surface density (ρ_*, Σ_*)
 - SFR and ISM pressure, density $(P = \rho \sigma_z^2 \approx \Sigma_{gas} g_z/2, t_{ff}(\rho))$

Spatially-resolved gas and SFR

Three regimes of star formation

- Increase of Σ_{SFR} with
 - $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2}$:
 - Superlinear at low, high ends
 - $\Sigma_{\rm gas} \approx \Sigma_{\rm HI} \lesssim 10 M_{\odot} \, {\rm pc}^{-2}$
 - $\Sigma_{\rm gas} \approx \Sigma_{\rm H2} \gtrsim 100 \ {\rm M}_{\odot} \, {\rm pc}^{-2}$
 - Close to linear for $10M_{\odot} pc^{-2} \leq \Sigma_{gas} \approx \Sigma_{H2} \leq 100 M_{\odot} pc^{-2}$ with $t_{SF'H2} = 2 \times 10^9 \text{ yr}$
- Significant scatter for HIdominated regime
 - $\Sigma \lesssim 10 M_{\odot} \, pc^{-2}$

 \Rightarrow parameter other than Σ_{gas} is important!

$\Sigma_{\rm SFR}$ vs. $\Sigma_{\rm HI}$, $\Sigma_{\rm H2}$

- HI saturates at $\sim 10 M_{\odot} pc^{-2}$ (Wong & Blitz 2002)
- SFR linear in the molecular gas at moderate $\Sigma_{H2} \leq 100 M_{\odot} \text{ pc}^{-2}$, even in HI-dominated regime: $\Sigma_{SFR} = \Sigma_{H2}/t_{SF}(H_2)$ with $t_{SF}(H_2) = 2 \times 10^9 \text{ yr}$

SFR and H₂/HI correlations with stellar content

Observed $\Sigma_{\rm H2} / \Sigma_{\rm HI}$ - pressure relation

• Blitz & Rosolowsky (2006) found that $R_{mol} = \Sigma(H_2) / \Sigma(HI)$

increases with galactic gas and stellar density as

$$R_{mol} = \left[\frac{P_{ext}/k}{(3.5\pm0.6)\times10^4}\right]^{0.92\pm0.07}$$

- BR *P_{ext}* is estimate of midplane pressure, assuming vertical equil.
- Leroy et al (2008) found similar relation, for both spirals and dwarfs

SFR and pressure correlation

Why does star formation increase with pressure?

because...

Pressure increases with star formation! Why does star formation increase with "hydrostatic" pressure?

because...

Thermal + turbulent pressure increases with star formation!

Σ_{SFR} vs. Σ_{H2} in starburst regime

- Gas dominated by H₂
- Steeper KS slopes than in mid-disks
- Regime of steeper KS slope corresponds to
 - $\Sigma_{gas} > \Sigma_{GMC} \sim 100 M_{\odot} pc^{-2}$ for resolved GMCs as observed in Local Group Blitz et al 2007, Sheth et al 2007, Bolatto et al 2008
 - ⇒ "overlapping" GMCs
- KS slope ~ 1.5 to 2, depending on $CO \rightarrow H_2$ conversion

→ See Shetty et al 2011a,b and Narayanan et al (2011,2012) for X_{CO} dependencies 8/6/13

Data from Genzel et al (2010) sample; two different CO \rightarrow H₂ conversion factors α

SF and orbital time

Kennicutt (1998)

Genzel et al (2010)

 $\Sigma_{\rm SF} \simeq 0.1 \, \Sigma_{\rm gas} / t_{\rm orbit}$

Gas consumption efficiency

- Interpretation of $t_{SF}(H_2)$ = const. at $\Sigma_{H2} \leq 100 M_{\odot} \text{ pc}^{-2}$: "isolated" GMCs have ~uniform properties and SFE independent of local environment $t_{SF}(H_2) = 2 \times 10^9 \text{ yr requires } \epsilon_{GMC} = 0.01 \text{ if } t_{GMC} = 20 \text{ Myr},$ $\epsilon_{ff} = 0.003 \text{ if } \langle n_H \rangle \sim 50 \text{ cm}^{-3}$
- Interpretation of t_{SF}(H₂) decreasing in starbursts: where GMCs "overlap," density increases and relevant dynamical timescales are shorter
- Gas consumption timescale $t_{SF,gas} \equiv \Sigma_{gas} / \Sigma_{SFR}$:
 - ~10% efficiency per orbital time $t_{orb} = 2\pi/\Omega$
 - Lower efficiency over

 $t_{\rm ff} = (3\pi/32G\rho_{\rm gas})^{1/2} \sim 0.2 t_{\rm orb}, t_{\rm ver} = H/v_z \sim 0.05 t_{\rm orb}$

• Star formation is *inefficient at consuming gas* over timescales relevant to the ISM dynamics

Questions for theory

- Why does the slope of $\Sigma_{SFR} = A \Sigma_{gas}^{1+p}$ change in different regimes?
- What is the origin of the R_{mol} -pressure relation?
 - Why does the "old" stellar component matter for SF?
 - What is the role of the multiphase ISM?
- Why is gas consumption so inefficient?
- How does energy and momentum feedback from massive stars affect the ISM and SFR?
- Can observed SFR relations be captured with simplified theoretical models?
- Can simulations reproduce observed SF relationships?

II. The multiphase ISM

ISM phases/structure

In galactic disks, the raw material for star formation is the neutral ISM:

• Atomic gas:

 Warm atomic gas (T~10⁴ K; n~0.3 cm⁻³ in Solar neighborhood) diffuse; fills much of volume near Galactic midplane

- Cold atomic gas (T~100 K; n~30 cm⁻³ in Solar neighborhood) organized in dense clouds, sheets, & filaments; L~1-10pc
- Warm and cold phases coexist, in pressure equilibrium (FGH 1969)
- Primary component in outer galaxies; saturated in inner galaxies: $\Sigma_{\rm HI} \leq 10 \, M_{\odot} \, pc^{-2} \, (N_{\rm H} \sim 10^{21} \, cm^{-2})$

• Molecular gas:

- Cold (T~10 K) and dense (n >100 cm⁻³)
- Collected in gravitationally bound, turbulent clouds (GMCs)
- Requires shielding from dissociating UV to exist
- Primary component in inner galaxies: Σ_{H2} up to 10^2 - $10^3 M_{\odot} pc^{-2}$ Other phases:
 - Warm ionized gas (T~10⁴; heated/ionized by stellar UV)
 - Hot ionized gas (T~10⁶K ; heated by supernova shocks)

Two-phase Thermal Equil.

 $\log P/k (K \text{ cm}^{-3})$

• In Solar neighborhood,

 $P_{th,0} \approx P_{two-phase} \equiv (P_{min,cold} P_{max,warm})^{1/2}$ $\approx 3000 \text{ k K cm}^{-3} \quad (Wolfire et al 2003)$

• Dependence of P_{two-phase}:

$$\frac{1}{k} = \left[n_{\min} T_{\min} n_{\max} T_{\min} \right]^{1/2}$$
$$= \Gamma \left[\frac{T_{\min} T_{\max}}{\Lambda(T_{\min}) \Lambda(T_{\max})} \right]^{1/2}$$

• $T_{\min}, T_{\max} \sim \text{const.}; \ \Gamma \propto Z_d J_{FUV}, \Lambda \propto Z_g \Rightarrow$

 $P_{two-phase} \propto J_{FUV} Z_d / Z_g$ $\propto f_{rad} \Sigma_{SFR}$ Larger f_{rad} at low Z_d : further UV propagation in diffuse ISM

Wolfire et al (1995)

20

equilibrium: $n\Lambda = \Gamma$

Molecular fraction in a cloud

Sternberg (1988);Krumholz, McKee, & Tumlinson 2009a,b; McKee & Krumholz 2010

- A cloud of cold gas exposed to external UV begins to become molecular (H₂)when
 - $\Sigma_{cloud} > 11 M_{\odot} \, \mathrm{pc}^{-2} \, / Z'^{0.8}$
 - lower metallicity Z' requires a larger shielding column of HI
- For spherical clouds, $\frac{M_{HI}}{M_{H2}} \approx \left[Z^{10.8} \left(\frac{N_{H,cloud}}{2 \times 10^{21}} \right) 0.7 \right]^{-1}$
- Clouds are mostly-molecular at high columns
 - only gravitationally-bound clouds have high columns in outer galaxies
- _{8/6/13} Most gas is molecular in inner galaxies

III. Self-regulated star formation

ISM energetics

- Timescales for cooling and turbulent dissipation in the neutral ISM are short
- For equilibrium, energy must be replenished
- High-mass stars efficiently:
 - heat the ISM with photoelectric effect from far-UV
 - drive turbulence in the ISM with expanding SN remnants
 - also: destroy parent GMCs through radiation, winds, SNe
- Midplane pressure
 « energy density must support weight of diffuse ISM
 - pressure is dominated by turbulence for most of ISM
 - weight depends on gravity of gas, stars, dark matter
- ISM equilibrium demands a certain level of feedback

Thermal and dynamical equilibrium

• Thermal equilibrium:

 $n\Lambda(T) = \Gamma \Rightarrow P_{th} \Lambda(T) / T \propto J_{FUV} \Rightarrow P_{th} \propto \Sigma_{SFR}$

- Turbulent equilibrium:
- $P_{turb} = \rho v_z^2 \sim v_z^2 \Sigma / H \sim v_z \Sigma / (H / v_z) \sim (momentum/area) / t_{ver}$ dissipation=driving \Rightarrow

 $P_{turb} \sim (1/4) p_* \Sigma_{SFR} / m_* \Rightarrow P_{turb} \propto \Sigma_{SFR}$

• Vertical hydrostatic equilibrium: $P_{turb} + P_{th} \approx P_{DE} = \sum \langle g_z \rangle / 2 \approx \sum (2G \rho_*)^{1/2} \sigma_z + \pi G \Sigma^2 / 2$

 $\Rightarrow P_{DE} \approx P_{th} + P_{turb} \propto \Sigma_{SFR}$

Application to starburst regions

Ostriker & Shetty (2011)

- Cold "diffuse" molecular gas: $\Sigma_{gas} > \Sigma_{GMC} \sim 100 M_{\odot} pc^{-2}$
- Star formation rate from balancing weight with pressure (turbulence and trapped IR radiation):

$$\Sigma_{\rm SFR} = \frac{2\pi G}{f_p p_*/m_*} \Sigma_{\rm gas}^2 \frac{1+\chi}{1+\tau/\tau_*}$$

- Self-gravity dominates stellar disk, bulge: $\chi \rightarrow 0$
- SN-driven turbulent pressure > radiation pressure for $\Sigma_{gas} \lesssim 10^4 M_{\odot} \, pc^{-2}$:

$$\frac{\tau}{\tau_*} = 0.008 \frac{\Sigma_{gas}}{100 M_{\odot} \text{pc}^{-2}} \frac{\kappa}{10 cm^2/g} \left(\frac{p_*/m_*}{3000 km/s}\right)^{-1} \left(\frac{\varepsilon_*}{10^{-3}}\right)^{-1}$$

• Radiative SN remnants (Cioffi et al 1988; Blondin et al 1998):

$$\frac{p_{*}}{m_{*}} \approx 3000 \text{km s}^{-1} \left(\frac{E_{\text{SN}}}{10^{51} \text{erg}}\right)^{0.94} \left(\frac{n_{0}}{1 \text{cm}^{-3}}\right)^{-0.12} \left(\frac{m_{*}}{100M_{\odot}}\right)^{-1}$$

$$\Rightarrow \sum_{8/6/13} \sum_{\text{SFR}} = 0.1 M_{\odot} \text{kpc}^{-2} \text{yr}^{-1} \left(\frac{\Sigma_{\text{gas}}}{100M_{\odot} \text{pc}^{-2}}\right)^{2}$$

25

Starburst regions

Data from Genzel et al (2010) sample; two different CO \rightarrow H₂ conversion factors α

→ See Shetty et al 2011a,b and Narayanan et al (2011,2012) for X_{CO} dependencies

8/6/13

Narayanan, Krumholz, Ostriker, & Hernquist (2012)

Starburst regime simulations

- Feedback-driven, turbulence-dominated equilibrium:
 - $P_{turb} \approx W \approx \pi G \Sigma^2 / 2 \approx (1/4) (p_*/m_*) \Sigma_{SFR}$
 - $-\epsilon_{\rm ff} \sim 0.005 0.01$ insensitive to other conditions
 - $v_z \sim 5-10 \text{ km/s} \propto p_*/m_*$

Shetty & Ostriker (2012)

Mid/outer disks

Ostriker, McKee, & Leroy (2010)

- ISM surface density Σ_{gas} has two parts: gravitationallybound clouds Σ_{gbc} and diffuse atomic gas $\Sigma_{diff} = \Sigma_{gas} - \Sigma_{gbc}$
- SF is in GBC component, with timescale t_{SF,gbc} (~2Gyr):
 - $\Sigma_{\text{SFR}} = \Sigma_{\text{gbc}} / t_{\text{SF,gbc}} = (\Sigma_{\text{gas}} \Sigma_{\text{diff}}) / t_{\text{SF,gbc}}$
- Diffuse gas is in vertical dynamical equilibrium
 - vertical gravity is from gas, stars, dark matter

 $P_{tot} = P_{th} + P_{turb} = P_{DE} = \frac{\Sigma_{diff}}{2} \langle g_z \rangle \approx \frac{\Sigma_{diff}}{2} \left[\pi G(\Sigma_{diff} + 2\Sigma_{gbc}) + 2(2G\rho_*)^{1/2} \sigma_z \right]$

- Diffuse gas is in thermal equilibrium, consistent with twophase (warm+cold) atomic medium: $P_{th} \propto \Sigma_{SFR}$
- Diffuse gas is in turbulent equilibrium, with dissipation on crossing time balanced by driving from SNe: $P_{turb} \propto \Sigma_{SFR}$
- Feedback relations + hydrostatic equilibrium give cubic equation to solve for Σ_{SFR} , given Σ_{gas} and ρ_*

Mid/outer disks: results

• Star formation rate:

- At high Σ_{gas} , ρ_* : $\Sigma_{gas} \approx \Sigma_{gbc} \gg \Sigma_{diff} \Rightarrow \Sigma_{SFR} = \Sigma_{gas} / t_{SF,gbc}$ - At low Σ_{gas} , ρ_* : $\Sigma_{gas} \approx \Sigma_{diff} \gg \Sigma_{gbc} \Rightarrow$

 $\Sigma_{SFR} \approx \frac{\Sigma_{SFR,0}}{P_{tot,0}} P_{tot} \approx \frac{\Sigma_{SFR,0}}{P_{th,0}} \frac{\Sigma_{diff}}{\alpha} \left[\frac{\pi G \Sigma_{diff}}{2} + \pi G \Sigma_{gbc} + (2G\rho_*)^{1/2} \sigma_z \right]$

• Self-gravitating-to-diffuse ratio: $\frac{\Sigma_{gbc}}{\Sigma_{diff}} = \frac{\langle g \rangle_z}{1.3 \text{pc Myr}^{-2}} \propto \left[\frac{\pi G \Sigma_{diff}}{2} + \pi G \Sigma_{gbc} + (2G\rho_*)^{1/2} \sigma_z \right]$...similar to empirical R_{mol} –P relation

R.J. Gabany

Spiral Galaxy NGC 7331 Spitze NASA / JPL-Caltech / M. Regan (STScI), and the SINGS Team

Spitzer Space Telescope • IRAC

ssc2004-12a

NGC 7331 – thermal/dynamical equilibrium model

Ostriker, McKee, & Leroy (2010)

[kpc]

- If diffuse gas fraction is high...
- From vertical dynamics,

 $\frac{P_{th}}{\sum_{diff}} (2G\rho_*)^{1/2} \frac{\sigma_{z,diff}}{\alpha}$ is high

• $\Sigma_{gbc} = \Sigma_{gas} - \Sigma_{diff}$ is low $\Rightarrow \Sigma_{SFR}$ low $P_{two-phase} / k \sim 10^{6} \text{K cm}^{-3} \frac{\Sigma_{SFR}}{M_{\odot} \text{ kpc}^{-2} \text{yr}^{-1}}$

• Warm medium cools and condenses to make cold clouds

• Cold clouds collect into GBCs; lowers Σ_{diff} and P_{th}

ρ

• Increase in $\Sigma_{\rm gbc}$ raises $\Sigma_{\rm SFR}$

• Higher Σ_{SFR} raises $P_{two-phase}$

Simulations with radiative and turbulent feedback

- Test & calibrate thermal/ dynamical equilibrium model:
- Kim, Kim, & Ostriker (2011,2013)
 - include turbulent driving from SN
 - include dependence of heating rate on star formation rate
 - simulations use the Athena code

- Does weight=midplane pressure?
- Does heating, thermal equilibrium yield P_{th} close to $P_{two-phase}$?
- Does turbulent driving/dissipation yield P_{turb} close to P_{driv,SN}?
- What is resulting SFR behavior?

Test of equilibrium assumptions

^{8/6/13} Vertical dynamical equilibrium: $P_{tot} \propto P_{tot,DE} \propto \Sigma g_z$

Kim, Kim, & Ostriker (2011)

Thermal state of gas

Kim, Kim, & Ostriker (2011)

Solar neighborhood model: $\Sigma_{gas} = 10 M_{\odot} pc^{-2}$

Thermal state of gas

Kim, Kim, & Ostriker (2011)

Outer galaxy model: $\Sigma_{gas} = 2M_{\odot} pc^{-2}$

Thermal state of gas

Kim, Kim, & Ostriker (2011)

Mid-disk model: $\Sigma_{gas} = 20M_{\odot} \text{ pc}^{-2}$

Test of equilibrium assumptions

^{8/6/13} Thermal equilibrium with feedback: $P_{th} \propto P_{two} \propto \Sigma_{SFR}$

Test of equilibrium assumptions

Kim, Kim, & Ostriker (2011)

^{8/6/13} Turbulent equilibrium with feedback: $P_{turb} \propto P_{driv} \propto \Sigma_{SFR}$

44

Turbulent state of the gas

- Vertical turbulent velocity dispersion v_z≈ 7 km/s
- Consistent with previous numerical results:

de Avillez & Breitschwerdt 2005, Dib et al 2006, Shetty & Ostriker 2008, Agertz et al 2009, Joung et al 2009

• Consistent with observations of turbulent velocities in MW and nearby face-on galaxies:

Heiles & Troland 2003, Dickey et al 1990, van Zee & Bryant 1999, Petric & Rupen 2007, Kalbera & Kerp 2009

- Turbulence independent of $\Sigma_{\rm SFR}$
 - $t_{diss} \sim t_{ver} = H/v_z \propto t_{sf}$
 - $v_z \approx \epsilon_{ver} p_*/m_*$ for $\epsilon_{ver} \sim 0.003$

Kim, Kim, & Ostriker (2011) 45

Kim, Kim, & Ostriker (2011)

46

Bigiel et al (2008, 2010)

 $\Sigma_{\rm SFR}$ vs. $\Sigma_{\rm gas}/t_{\rm ff}$ and $\Sigma_{\rm gas}/t_{\rm ver}$

Kim, Kim, & Ostriker (2011)

47

$$P_{tot} = P_{th} + P_{turb} \approx \frac{\Sigma_{diff}}{2} \left[\pi G(\Sigma_{diff} + 2\Sigma_{gbc}) + 2(2G\rho_*)^{1/2} \sigma_z \right]$$

Kim, Kim, & Ostriker (2013)

 $\Sigma_{\rm SFR}$ vs. $\Sigma_{\rm gas}$

Σ_{SFR} vs. equilibrium pressure

8/6/13

51

Summary

- Recent observations at ~ kpc resolution in disk galaxies suggest (at least) three regimes of Σ_{SFR} vs Σ_{gas}
- SF is also correlated with *stellar* content at low Σ_{gas}
- Self-regulated star formation:
 - feedback of energy and momentum from massive stars/SNe prevents most of ISM from collapsing gravitationally on scales ≤ H
 - Σ_{SFR} increases, with $P_{\text{diffuse}} \propto \Sigma_{\text{SFR}}$ from feedback, until $P_{\text{diffuse}} = P_{\text{DE}}$
- In simultaneous thermal and dynamical equilibrium, $\sum_{SFR} \propto \sum \rho_*^{1/2} \sigma_z$ in outer (mostly atomic) disks
- Molecule-dominated starbursts have $\Sigma_{\rm SFR} \propto \Sigma^2$
- Unified self-regulation law in both starbursts, outer disks: $\Sigma_{SFR} \propto P_{DE}$; coefficient set by feedback yield

SFR and H2/HI correlations with galactic environment

Dependence of X_{CO} on \Sigma_{H2}

 $\log (\Sigma_{gas} (M_{sun} pc^{-2}))$

Observations in different regimes: Tacconi et al 2011

$\Sigma_{\rm SFR}/\Sigma_{\rm gas}$ vs. $P_{\rm tot}$ for dwarfs

