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FLASH code: Gravity

Motivation

* dynamics of stratified atmospheres
* N-body dynamics in gaseous media (e.g. stellar cluster, planets)
* collapse of gas cores (e.g. star formation)

e formation of molecular clouds

Foce = 490 AU
boxsize 0.34 pc

molecular cloud formation
collapse of a cloud core
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FLASH code: Gravity

* coupling to hydro-dynamics / MHD

op _ _
aaptv -V - (pvv)+ VP = pg
OpE
gt FV-l(pE+P)v] = pv-g

g : gravitational acceleration

= Via source term
— no explicit total energy conservation using gravitational potential
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FLASH code: Gravity

* Gravity modules

e source/physics/Gravity
— default: constant gravitational acceleration

e source/Grid/GridSolvers

= for self-gravity
* Multipole

* Multigrid
* BHTree
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FLASH code: Gravity

* time-independent external fields:

* source/physics/Gravity/GravityMain

* Constant
— g=const in gdirec =x,y or z direction

* PlanPar
= e=GNM/ K h = X,y or z-direction

* PointMass
= g=GNM/rr/r

= similarly for sink particles
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FLASH code: Gravity

* Self-gravity:
— source/Grid/GridSolvers

provides gravitational potential ®(x) via

* multi-pole solver
* multi-grid solver (Paul Ricker 2008)
* tree-based solver (Richard Wunsch)

= V?’@P(x) = 47nGn p(X) = g(x)=—-VO(x)

— 1 . . — . .
Jusijk = 3az (Pi-1ik — Pi+1jk) implementation via

=  Oyiijk = ﬁ ((/5i,j—1,lc — ¢i,j+1,l~c) finite difference

1 scheme
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FLASH code: Gravity

* setup with self-gravity:

in Config file

=— REQUIRES physics/Gravity/GravityMain/Poisson/Multipole

or
— REQUIRES physics/Gravity/GravityMain/Poisson/Multigrid

or
— REQUIRES physics/Gravity/GravityMain/Poisson/BHTree

ISSAC 2013, Robi Banerjee



FLASH code: Gravity

* setup with self-gravity:

boundary conditions

bcTypes Type of boundary condition

0 Isolated boundaries

1 Periodic boundaries

2 Dirichlet boundaries

3 Neumann boundaries

4 (Given-value boundaries




FLASH code: Gravity

* Multipole solver

formal solution of V2®(x) = a p(x) ;o= 4nGN
_ x 3.7 p( )
— b(x) = An °x x — x/|

with Green’s function

|x x’| WZ Z 25_{_1 £+1Y€m(9,’<p)y}3m(gﬁp)
=0 m=—¢

where Yiu(0,p) are the spherical harmonic functions

| xp(x) dx
J p(x) dx

— origin at center of mass (CM): Xcm =
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FLASH code: Gravity

* Multipole solver

= D(x) — D(r, u(r))

with source moments u(7)

: — |
e.g. lop(r) = Eﬁ - :;1 /> | d3x' 7" p(x') Popy (cos 0') cos me’

and 1, u®, u°°, (even/odd, inner/outer)
= compute 1’s Up to /max
— note: scales at least as 2XNgrid*/max>

— only useful for low /max, i.e. nearly spherical problems
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FLASH code: Gravity

* Multipole solver

® main runtime parameters

Variable Type Default  Description
mpole_lmax integer 10 Maximum multipole moment
quadrant logical .false. Usesymmetry to solve a single quadrant in 2D ax-

isymmetric cylindrical (7, z) coordinates, instead
of a half domain.

e supported grid geometries:

= | D, spherical
— 2D, cylindrical, spherical
= 3D, Cartesian, axi-symmetric
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FLASH code: Gravity

* Multipole solver

* possible test suit:

unitTest/Multipole

= only multipole solver without gravity
based on MaclLaurin spheroid analytic solution
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FLASH code: Gravity

* Multipole solver

* improved Multipole solver

= source/Grid/GridSolvers/Multipole new

®* improvements:
e efficient memory layout
* elimination of over- and underflow errors when using
astrophysical (dimensions = 10%) domains

* elimination of subroutine call overhead (| call per cell)
®
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FLASH code: Gravity

e Multigrid solver

* based on improved Huang-Greengard (2000) method by
P. Ricker (Ap]S, 2008)

* iterative method
* uses fine-coarse structure of AMR grid

— restrict & interpolate solution
to different refinement levels = V=cycle

e main functions in

source/Grid/GridSolvers/Multigrid/
= gr hg*.F90
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FLASH code: Gravity

* Multigrid solver:V-cycle

11 DESCRIPTION
I This is the main Poisson solve routine for the Huang & Greengard
11 (2000, SIAM J. Sci. Comput., 21, 1551) algorithm. This routine

Il defines the multigrid cycle as expressed in the article.
11

Il coarse A

I 0---->0 0---->0

I A S \ A S \ C

I} r 00 r 00O

I} ¢ 1\ e L\r

I 5 vV O S vor

I t e \ t e \ e

I r 0 r 0 C

I 1 AN 1 \ t

I C 0 C o

I t AN t \

Il src O-=-==-- >0 gr_iSls O-====- >...until Irl < rtol
Il fine take residual take new residual__>
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FLASH code: Gravity

* Multigrid solver: more details

~

* residual R(X) — 47TG,0(X) — vng(X)

* finite difference operator°

ngbwk = A (¢z+1,3k ¢zyk Cbz— ,J/f)

® restrict operator:ﬁne — coarse

N TcC
(qub)z]k) = _l Z ¢z ][’_2}

/kl
* interpolation operator at block edgeS' coarse — fine

c A+1 “P(c),t
(I€¢ v/ 9k’ = 2 : ! J'k’PqT¢z+p Jj+q,k+r

p,q,r=—2
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FLASH code: Gravity

* Multigrid solver: Interpolation operator

X O O | O Example:
S O —x boundary
X O O | O
SO LP[OLR
‘l ‘l l
XO|lolo| o
i,
X1/2.j'k'pgr = ;Bp’Yj g Vk'rs
7 7 1
1O (6"):( 2’ 12" 127 12’ O)
O O
(3 1 3>  odd
X O () = <_128’ 64> 647 128) 7 %%
TOTY 31 S 3 )
\(ﬁa as 36_4) m , J CEven
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FLASH code: Gravity

* Multigrid solver: more details

1.
2.

D.

Restrict the source function 47Gp to all levels. Subtract the global average for the periodic case.
Interpolation step: For ¢ from 1 to £y ax,

a) Reset the grid so that £ is the maximum refinement level

(
(b) Solve Dz(ﬁmk = 47erka for all blocks b on level £. = sin- type Green’s function or FFT

c¢) Compute the residual R, = 4nGpl) — ’Ded)m )

(
(d) For each block b on level £ that has children, prolong face values for ¢%, onto each child block.

ijk

. Residual propagation step: Restrict the residual R% ik to all levels.

Correction step: Compute the discrete Lo norm of the residual over all leaf-node blocks and divide
it by the discrete Lo norm of the source over the same blocks. If the result is greater than a preset
threshold value, proceed with a correction step: for each level £ from 1 to .,

(a) Reset the grid so that £ is the maximum refinement level
(b) Solve D,C¥, = R¥, for all blocks b on level £. = sin-type Green’s function or FFT

c) Overwrite RS, with the new residual R, — D,C?5; for all blocks b on level £.
ijk ijk
(d) Correct the solution on all leaf-node blocks b on level £: % ik — Pt e

(e) For each block b on level £ that has children, interpolate face boundary valucs of Cf’fk for each
child.

If a correction step was performed, return to the residual propagation step.

eer vm =~ . =y .~=~| Banerjee



FLASH code: Gravity

* Multigrid solver: more details

1.
2.

D.

. Residual propagation step: Restrict the residual R% ik to all levels.

Restrict the source function 47Gp to all levels. Subtract the global average for the periodic case.
Interpolation step: For ¢ from 1 to £y ax,

a) Reset the grid so that £ is the maximum refinement level

(
(b) Solve Dz(ﬁmk = 47erka for all blocks b on level £. = sin- type Green’s function or FFT

c¢) Compute the residual R, = 4nGpl) — ’Ded)m )

(
(d) For each block b on level £ that has children, prolong face values for ¢%, onto each child block.

ijk

locks and divide
than a preset

Correction step: Compute the discrete Lo norm of the residual over all leaf-no
it by the discrete Lo norm of the source over the same blocks. If the result is great
threshold value, proceed with a correction step: for each level £ from 1 to .,

(a) Reset the grid so that £ is the maximum refinement level
(b) Solve D,C¥, = R¥, for all blocks b on level £. = sin-type Green’s functionjor FFT

(c) Overwrite R, with the new residual R}, — D,C?5, for all blocks b on level £.

(d) Correct the solution on all leaf-node blocks b on level ¢: qﬁz] K qﬁw k

b for each

(e) For each block b on level £ that has children, interpolate face boundary valucs of L7k

child.

If a correction step was performed, return to the residual propagation step.
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FLASH code: Gravity

| do m = 1, gr_hgMeshRefineMax
call gr_hgSetMaxLevel(m) | This is a new FLASH3 routine
| call gr_hgNorm(@, 1, gr_iSource, norm_tmp, MG_NODES_LEAF_ONLY)
call gr_hgSetZeroBoundary(m, gr_iSoln) !oK
call gr_hgSolvelLevel(m, gr_iSource, gr_iSoln, SolveBlock, MG_NODES_ALL_NODES) ! Working here
call gr_hgResidual(m, gr_iSource, gr_iSoln, gr_iSls) !oK
call gr_hgProlongBndries(m, gr_iSoln, gr_iSoln, @) ! LBR doesn't wanna know. But we looked at 1it...
enddo
! Correction step. Restrict residuals from finer levels to coarser levels.
| Solve for correction on these levels and interpolate boundary conditions to
| finer levels. Solve for corrections there and apply. Repeat. Repeat these
| correction steps until the desired residual norm is achieved.
do n = @, gr_hgMaxCorrections
call gr_hgNorm(@, 2, gr_iSls, norm_lhs, MG_NODES_LEAF_ONLY)

if (norm_lhs/norm_rhs <= gr_hgMaxResidualNorm) exit

do m = gr_hgMeshRefineMax-1, 1, -1
call gr_hgRestrict(m+1l, gr_iSls, gr_iSls)
enddo

call gr_hgSetMaxLevel(l)

call gr_hgSetZeroBoundary(l, gr_iCorr)

call gr_hgSolvelLevel(l, gr_iSls, gr_iCorr, SolveBlock, MG_NODES_ALL_NODES, dt, chi)
call gr_hglLevelAdd(1, gr_iSoln, gr_iCorr, MG_NODES_LEAF_ONLY) !oK

call gr_hgProlongBndries(1, gr_iCorr, gr_iCorr, @) !infamous

do m = 2, gr_hgMeshRefineMax
call gr_hgSetMaxLevel(m)
call gr_hgSetZeroBoundary(m, gr_iCorr)
call gr_hgSolvelLevel(m, gr_iSls, gr_iCorr, SolveBlock, MG_NODES_ALL_NODES)
call gr_hgResidual(m, gr_iSls, gr_iCorr, gr_iSls) ! not called on top level
call gr_hglLevelAdd(m, gr_iSoln, gr_iCorr, MG_NODES_LEAF_ONLY)
call gr_hgProlongBndries(m, gr_iCorr, gr_iCorr, @)

enddo
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FLASH code: Gravity

* Multigrid solver: Additional fields needed:

* ‘gpot’ key GPOT VAR: actual gravitational potential
* ‘gpol’ key GPOT VAR: gravitational potential from
previous time step = needed to start solution iteration

*‘1sls’ key ISLS VAR: residual potential variable
*‘icor’ key ICOR VAR: correction potential variable
*‘imgm’ key IMGM VAR: image mass for periodic BCs
*‘imgp’ key IMGP VAR: image potential for periodic BCs
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FLASH code: Gravity

* Multigrid solver:

* supported geometries

— only Cartesian geometry in 1,2 and 3 D

* supported boundary conditions

— isolated

— perodic

= Dirichlet (@ given at the boundaries)
— Neumann, not yet implemented
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FLASH code: Gravity

* Multigrid solver: main files
source/Grid/GridSolvers/Multigrid

gr_hgBndry.F90

gr_hgData.F99
gr_hgFinalize.F90
gr_hgGuardCell.F90
gr_hgInit.F90
gr_hgInitSource.F90
gr_hglLevelAdd. F90
gr_hglLevelAddScalar.F90
gr_hglLevelMultiplyScalar.F90
gr_hglLevelZero.F99
gr_hgMapBcType.F90
gr_hgNorm.F90
gr_hgPoissonSolvelD.F90
gr_hgPoissonSolveZD.F90
gr_hgPoissonSolve3D.F90
gr_hgPoissonSolveBlock.F99
gr_hgProlongBndries.F99
gr_hgRecordNodeTypeState.F90
gr_hgResidual.F90
gr_hgRestoreNodeTypes.F99
gr_hgRestrict.F90
gr_hgSetExtBoundary.F90
gr_hgSetMaxLevel.F90
gr_hgSetZeroBoundary.F90
gr_hgSolve.F99
gr_hgSolvelLevel.F90

g f‘_hg_amr‘_lbl k_bcset_work.F90 ISSAC 2013, Robi Banerjee




FLASH code: Gravity

* Multigrid solver: Solution convergence
= UG: truncation error: O(Ax?)

— weaker for AMR (here: 5% of vol. on highest refinement level)

10_2_ T T T T ] T T T T T T T T ] T T T
. e = 107% AMR +
e = 107% unif A
e =05AMR =

€ e =05 unif O
o e = 0.96 AMR @
c .
c e = 0.96 unif O
2 1073 -]
. - N
O
C: Neff 2
=
~N
£
o
C 107 =
g [~ 9]
)
o~ -
—

10—5 L L L L l L L 1 L ' ] L L l

. 10 100

Ricker 2008

Effective number of zones N,
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FLASH code: Gravity

e Barns & Hut Tree Solver
(Barns & Hut, Nature 1986)

* implemented by Richard Wunsch (Prague)

* based on an oct-tree with monopole moments
— matches oct-tree AMR structure of PARAMESH

* basic properties
e scaling: NVl1og(/N) : N number of grid/mass cells
instead V2 of for direct summation

* works only for NBX = NBY = NBZ
* NBX = 2" (not yet tested for NBX # 8)
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FLASH code: Gravity

* Tree Solver: steps to calculate the gravitational potential:
e build the tree:

|. build oct-tree in block (block-tree)| v -*
= logx(nbx) levels \ \ ¢

— stored in gr bhTreeArray

EC

S
{
(-

2. masses and CMs of top nodes are
distributed to all processors via \ \ ¢ \
gr bhTreeParentTree

(4 ,MAXBLOCKS , NPROCS) '

ECC | ECS

ECS | ECS

3. calculation of masses and CMs
of parent blocks on all CPUs
— stored also in gr bhTreeParentTree

— tree down to leaf block information on all CPUs
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FLASH code: Gravity

* block-tree structure in memory for
blocks with 8x8x8 grid cells

= linear array in memory: size = 8% + 4x(8>+81+8%)= 804

level O
level |
level 2
36 68 100 132 164 196 228 260
level 3
292 804
AMR block

— access via multi-index
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FLASH code: Gravity

* Tree Solver: steps to calculate the gravitational potential:
* communication of the tree:

|. determine which block-trees to be communicated:

Snode(l)
Dmin

< gr_bhTreeLimAngle

= S(/) :size of the local block-tree at level /[=0...3
= Dmin : minimum distance to all remote blocks

all eight corners of both, the local and the remote
blocks, are checked

— typical values for gr bhTreeLimAngle:0.5... 1.0
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FLASH code: Gravity

* Tree Solver: steps to calculate the gravitational potential:
* communication of the tree:

|. determine which block-tree levels to be communicated:

level 3
S, [
ode(l) gr bhTreeLimAngle evel s
Dmin level O
2. communication of (JPU 0
block-tree levels , | M\
— to allocate memory on ‘
remote CPUs /)
= all values for a given CPU /
in a single message é ]
PU1
3. selected block-tree nodes

are send to remote CPUs
— all block-tree nodes are packed into a single message
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FLASH code: Gravity

* Tree Solver: steps to calculate the gravitational potential:
e calculation of the potential = the “tree walk™

— most time consuming part (~ 90 % of tree solver)
= fully parallel, no more communication needed

e walk the tree for local block 4
— start with refinement level one

B is the currently processed tree node
e if Bisa parent block

= Sp/Dap< Oiim (Sg: size of B, D4p: min distance to CM3)
— A¢A,cell =—Q MB/Dcell,B

else continue with child-blocks of B
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FLASH code: Gravity

* Tree Solver: steps to calculate the gravitational potential:

e if B is a leaf block:

— block tree of B is walked separately for each level
— block tree consists of nodes NV

= SN/Dcei,v < Giim (Sw : size of node V)

== A¢A,cell =— QG Mn/ Dcell,N

else continue with children of N
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FLASH code: Gravity

* Tree Solver:Test with Bonnor-Ebert sphere

10g10/(P-DP 7))/ Pz(0)]

0.05
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o
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0.05

0.025

y [pc)
o
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-0.025
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FLASH code: Gravity

* Tree Solver:
* supported geometry

— so far, only 3D cartesian geometry

* boundary conditions
— isolated

— periodic — generation of ‘Ewald’ field values necessary

PARAMETER gr_bhTreeLimAngle REAL 0.5
PARAMETER gr_bhIlist INTEGER )
e Parameters PARAMETER gr_bhEwaldFieldNx INTEGER 64
PARAMETER gr_bhEwaldFieldNy INTEGER 64
PARAMETER gr_bhEwaldFieldNz INTEGER 64
PARAMETER gr_bhEwaldSeriesN INTEGER 10

PARAMETER gr_bhEwaldAlwaysGenerate BOOLEAN TRUE
PARAMETER gr_bhEwaldFName STRING "ewald_field"
PARAMETER gr_bhUseEwaldDecomp BOOLEAN

PARAMETER gr_bhEwaldIsoFac INTEGER




FLASH code: Gravity

e Tree Solver: the source files
in source/Grid/GridSolvers/BHTree/Wunsch

Grid_solvePoisson.F90
gr_bhBlockRelationship.F90
gr_bhBuildTree.F90
gr_bhBuildTreeBlock.F90
gr_bhComBlkProperties.F90
gr_bhComParentTree.F90
gr_bhData.F90
gr_bhDestroyTree.F90
gr_bhErfc.F90
gr_bhEwald.F90
gr_bhEwaldField.F90@
gr_bhExchangeTrees.F90
gr_bhFinalize.F90
gr_bhFindNeighbours.F90
gr_bhGetTreePos.F90
gr_bhGetTreeSize.F90
gr_bhILContrib.F90@
gr_bhInit.F90@
gr_bhInitTemplates.F90
gr_bhLeafContrib.F90
gr_bhLocalInterface.F90@
gr_bhParentContrib.F90
gr_bhPotential.F90
gr_bhPotentialBlock.F90
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FLASH code: Gravity

* Maclaurin test problem: collapse of a spheroid

source/Simulation/SimulationMain/MacLaurin

spheroid with ellipticity e = 0.9
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FLASH code: Sinks

tasks
* try MaclLauren setup with
* multipole

* multigrid and
* BHTree

Poisson solvers

* set up and run a collapse Bonnor-Ebert problem:

source/Simulation/SimulationMain/BonnorEbert

replace Config with /pfs/banerjee/Config B:
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