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All about Athena!
(Five lectures)!

Jim Stone!
Department of Astrophysical Sciences!
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Outline of lectures!

Lecture 1.  Introduction to basic algorithm!

Lecture 2.  Grids in grid codes!

Lecture 3.  Extra physics!

Lecture 4.  Radiation hydrodynamics!

Lecture 5.  Example applications; future developments!
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Outline of Lecture 2:!

1.  Alternatives to structured grids!
2.  Galilean invariance of grid codes.!
3.  Cylindrical (curvilinear) grids!
•  Algorithm!
•  Tests !

4.  Static mesh refinement (SMR) in Athena!
•  Prolongation!
•  Restriction!
•  Flux correction!
•  Implementation !
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Cell-centered mass, momentum, energy; face-centered field:  

Athena uses a regular, structured mesh.!

Face-centered fluxes, and edge-centered EMFs.!
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Alternatives to structured Eulerian mesh.!

•  Spectral methods!
•  Unstructured Eulerian mesh!
•  Lagrangian mesh!
•  Particle methods (SPH)!
•  Arbitrary Langrangian-Eulerian (ALE) methods 

using either structured or unstructured meshes 
(moving mesh methods)!

Each method has its pros and cons.  Each is best for certain 
kinds of problems.  No one is best for all problems.!

Galilean invariance of grid codes!
Recently, Springel (2009) has reported grid codes produce 
different results when the calculations are run in different 
frames of reference (by adding constant background velocity).!

V0/Cs = 0                V0/Cs = 1               V0/Cs =10!

ρ=2, v=Cs/2!

 ρ=1, v=-Cs/2!

 ρ=1, v=-Cs/2!

e.g. Kelvin-Helmholtz instability between different 
density shear layers!

Add long wavelength perturbation Vy=Asin(4πx/Lx)!

Galilean invariance of grid codes!
This has widely been interpreted as “Fixed grid codes produce 
solutions which are not Galilean invariant”.!
!
If true, this would mean grid codes are useless, because the 
solutions they produce are completely incorrect.!
!
If true, this would violate the Lax-Wendroff theorem, which 
states conservative, consistent, convergent numerical schemes 
are guaranteed to converge to the correct solution.!

The reported lack of Galilean invariance of grid codes is based 
on a misunderstanding of the roles of truncation error and 
convergence in numerical solutions.  ! ! ! !

!Do not make this mistake yourself!!

Convergence demonstrates solutions 
computed with Athena are Galilean invariant!
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Should we be worried about change in 
truncation error with velocity?!
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Perhaps.  If dominant source of error in your 
application is due to advection, then reducing this error 
will help.!

But.  In most codes reducing 
error in velocity is at the expense 
of increasing error in other ways, 
e.g. using an unstructured mesh 
to represent multidimensional 
flows.!
!

Blast test from Springel (2009)! 10!

The fact that the truncation error is different in different frames 
does not mean the solution violates Galilean invariance (just that 
the truncation error does).!
Fact that truncation error changes solution well known from 
convergence tests, e.g. repeat KH test with V0=0 and different 
numerical resolutions.  Which is the correct solution that should 
be reproduced in all frames?!

252                             1002                           4002!
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KH test for resolved solutions.!

Study KH instability across a resolved shear layer 
in constant density fluid.!
!
Vx = (Cs/2)tanh(y/a)!
Add long wavelength perturbation Vy=sin(4πx/Lx)!
!
Boost solution to different frames using constant 
V0 = 100 Cs.  This is a tough test!!
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Solution for a resolved KH mode!

δVx!

Vy!
Color scale:           
+/- Cs/2 in all images !

Images of δVx = Vx-V0 and Vy at t=4.64 (peak of growth)!

Which one is moving, which one is at rest???!



13!

Solution for a resolved KH mode!

δVx!

Vy!
Color scale:           
+/- Cs/2 in all images !

V0=100Cs    V0=0!

Images of δVx = Vx-V0 and Vy at t=4.64 (peak of growth)!
Solutions are quantitatively identical.!

M=100!
M=0!

Solutions are identical!!
Solutions are resolved.!

Dynamics of resolved KH instability has been correctly captured 
in both frames remarkably well.!

Time evolution of KE in transverse component of velocity.!

Linear growth rate of 
instability captured 
correctly in both cases.!

Fixed grid codes converge to 
solutions which are Galilean 

invariant."
"

Period.!
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Motivation for curvilinear coordinates!
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Following slides on cylindrical grid courtesy A. Skinner:!



Equations in cylindrical coordinates!

17! 18!

19!

Must also take care to distinguish geometric center of cell from 
volume center!!

Reconstruction for CTU integrator!

20!



21!Source terms not needed for VL integrator.! 22!
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Computing source terms!
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Test: rotational stability!
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Test: rotational stability!
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Test: rotating wind solution!
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Test: Field Loop advection!
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Test: blast wave in strong field!
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Application: global MHD disk simulation of MRI!
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Resolution in R,Φ,Z is 480x1920x128 (32 zones per scale height), 
evolution for 200 orbits at inner edge.!

Sorathia et al 2012!
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Motivation: Static nested-grids are ideal to refine midplane in 
MHD studies of thin disks.!

Density               Angular momentum !
!                  fluctuations!

Static Mesh Refinement! Prolongation!

•  At internal fine/coarse mesh boundary, boundary 
conditions for fine mesh must be interpolated from 
coarse grid: prolongation!

•  Requires multidimensional, conservative 
interpolation step.!

•  To keep div(B)=0, we use method of Toth & Roe 
(2002)!
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Restriction!

•  In regions of overlap, the coarse grid solution 
must be replaced by the fine grid solution 
(averaged to the coarse grid): restriction!

•  Requires simple conservative average.!
•  Restriction dramatically reduces amount of data to 

be passed between levels with MPI.!
•  Note: this means pressure (and temperature) is not 

the same between levels.  Can have a big effect on 
microphysics.  Danger, Will Robinson. Danger!!
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Flux-correction!

•  At fine/coarse mesh boundaries, coarse grid fluxes 
may not be equal to sum of fine grid fluxes.!

•  This can break conservation across mesh hierarchy!
•  Must update coarse grid cell at boundary using 

fine grid fluxes: flux-correction!
•  Must perform the CT update to correct field at 

fine/coarse boundaries while keeping div(B)=0.  
Implementation of correction with CT can be 
complex.!
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Tests of SMR!
Tested with the complete Athena MHD test suite.!
Example: Linear wave convergence with fixed refinement region.!

•  Initialize pure eigenmode for each wave family!
•  Measure RMS error in U after propagating one wavelength!
•  quantitative test of accuracy of scheme!

Vy in fast magnetosonic wave!Grid has fixed fine-level region!

No reflections at fine/coarse boundaries!!

Linear wave convergence: fixed grid and SMR.!
SMR!
Fixed grid!

No increase 
in errors 
with SMR!!



Implementation!

Details are given at:!
https://trac.princeton.edu/Athena/wiki/AthenaDocsUG!
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Summary!
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•  Grid codes generate solutions which are Galilean 
invariant!

•  Substantial changes are required for cylindrical 
coordinates!

•  Static mesh refinement for CT MHD has been 
implemented but not for all physics options!

•  Future:!
•  Generalized curvilinear coordinates (GR)!
•  Adaptive mesh refinement (AMR)!

!


