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Outline of Lecture 2:

1. Alternatives to structured grids
2. Galilean invariance of grid codes.
3. Cylindrical (curvilinear) grids

4. Static mesh refinement (SMR) in Athena

Algorithm
Tests

Prolongation
Restriction
Flux correction
Implementation

Outline of lectures

Lecture 1. Introduction to basic algorithm
Lecture 2. Grids in grid codes

Lecture 3. Extra physics

Lecture 4. Radiation hydrodynamics

Lecture 5. Example applications; future developments

Athena uses a regular, structured mesh.

Cell-centered mass, momentum, energy; face-centered field:
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Face-centered fluxes, and edge-centered EMFs.



Alternatives to structured Eulerian mesh.

* Spectral methods

* Unstructured Eulerian mesh

* Lagrangian mesh

* Particle methods (SPH)

* Arbitrary Langrangian-Eulerian (ALE) methods
using either structured or unstructured meshes
(moving mesh methods)

Each method has its pros and cons. Each is best for certain
kinds of problems. No one is best for all problems.

Galilean invariance of grid codes

This has widely been interpreted as “Fixed grid codes produce
solutions which are not Galilean invariant”.

If true, this would mean grid codes are useless, because the
solutions they produce are completely incorrect.

If true, this would violate the Lax-Wendroff theorem, which
states conservative, consistent, convergent numerical schemes
are guaranteed to converge to the correct solution.

The reported lack of Galilean invariance of grid codes is based
on a misunderstanding of the roles of truncation error and
convergence in numerical solutions.

Do not make this mistake yourself!

Galilean invariance of grid codes

Recently, Springel (2009) has reported grid codes produce
different results when the calculations are run in different
frames of reference (by adding constant background velocity).

e.g. Kelvin-Helmholtz instability between different
density shear layers

Add long wavelength perturbation V,=Asin(4sx/L,)
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Should we be worried about change in
truncation error with velocity?

Perhaps. If dominant source of error in your
application is due to advection, then reducing this error
will help.

But. In most codes reducing
error in velocity is at the expense
of increasing error in other ways,
e.g. using an unstructured mesh
to represent multidimensional
flows.

Blast test from Springel (2009)

KH test for resolved solutions.

Study KH instability across a resolved shear layer
in constant density fluid.

V, = (C/2)tanh(y/a)
Add long wavelength perturbation V =sin(47tx/Ly)

Boost solution to different frames using constant
V=100 C,. This is a tough test!

The fact that the truncation error is different in different frames
does not mean the solution violates Galilean invariance (just that
the truncation error does).

Fact that truncation error changes solution well known from
convergence tests, e.g. repeat KH test with V,=0 and different
numerical resolutions. Which is the correct solution that should
be reproduced in all frames?

4002 10

Solution for a resolved KH mode
Images of 8V, = V.-V, and V, at t=4.64 (peak of growth)

Which one is moving, which one is at rest???

Color scale:
+/- C/2 in all images




Solution for a resolved KH mode Solutions are quantitatively identical.

Images of 8V, = V.-V, and V, at t=4.64 (peak of growth) Time evolution of KE in transverse component of velocity.
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+/- C/2 in all images
Dynamics of resolved KH instability has been correctly captured

13 in both frames remarkably well.

Following slides on cylindrical grid courtesy A. Skinner:

_ . Motivation for curvilinear coordinates
FlXCd grld COdeS COHVerge to Many astrophysical systems of interest, including disk systems,
S()luti()ns Wthh are Galﬂean winds, and jets, exhibit some sort of cylindrical geometry.

Furthermore, angular momentum preservation is superior for

invariant. rotating, grid-aligned flows, and imposition of boundary conditions
is much simpler compared to the Cartesian-grid case.

Period.




Equations in cylindrical coordinates

Momentum equation in cylindrical coordinates 9 18 )
EBR + E%JQ&R + E-’zR = 0, (4)
B s K v = 00 R T
5i( vt mrak | RoMes | + Rag( Meor+ 25( M) = 0, (2) . gt oR 5 9z ’
D)+ Rk (RMp)+ fgMost 2M. = 0, (3) 3p(RB2) +  Sp(RJRe) + Ea_(z)(RJqu) = 0, (6)
where Mj; = pv;v; — B;B;j + P*§j;. Myy/R includes centrifugal where Jjj = v;Bj — Bjv;.

force and magnetic tension terms.
Since we perform a finite area update on the magnetic field, the

Equation (2) is actually in angular momentum preserving form, scale factors only appear in the B, equation.
which has no source term.
The implemented Riemann solvers only compute linear momepta. o
Reconstruction for CTU mtegrator Projected linearized system - Cartesian coordinates
Computing the L/R states at time t"11/2 Otw + A Oxw = SMHD, (7)
© Reconstruct and limit in the characteristic variables where
@ Evolve the constant-coefficient linear system exactly _ -
oA he soluti he domain of dependence for each oo 90 000 0
t t t
verafe .Ie solution over the domain of dependence for eac 0w 0 0 1/p B,p B:/p
wave family 0 0 vy 0 0 —Bp 0
This method requires a complete set of eigenvalues (characteristic A=10 0 0 Vx 0 0 —B/p (8)
wavespeeds) and eigenvectors for the wave matrix A. 0 7P O 0 Vx 0 0
| 0 B, 0 —-B« © 0 Vx

Must also take care to distinguish geometric center of cell from
volume center! is the wave matrix linearized about the state w”, and syp is the
MHD source (Gardiner & Stone 2005, 2008).



Projected linearized system - cylindrical coordinates

Orw + A Ogw = syHD + Sgeom (9)

where A and spHD are analogous to the Cartesian case, and

—RPVR
7 (= 582)
— 1 (vsvr — 1B4Br)
Sgeom = 0 (10)
—Tie'YPVR
—?Vd,BR
_?VRBZ

is the geometric source term.

Source terms not needed for VL integrator. 21

The only remaining geometric source term is Mgy /R in the radial
momentum equation, which includes the centrifugal force and
magnetic tension terms.

FVM Update of the Geometric Source Term

tntl

M n+1/2 2 B2 + P*
<ﬂ> _ ;/ / P9 ="V vdt

(13)

Note that P* = P + B2 /2 is the total pressure, P = (y — 1)e is the
gas pressure, and € = E — pv?/2 — B2/2 is the internal energy.
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Once fluxes have been computed (from the L/R states via the
Riemann solver), the finite volume method (FVM) is used to
update the volume-averaged quantities.

FVM Update in Cylindrical Coordinates
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The FVM is coordinate-dependent, since it relies on the coordinate
expansion of differential operators.
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Computing source terms

For the P* contribution, full
FVM and CT updates are too

P*
costly. Instead, we compute

i+1/2

<E> - R,.+1/2P,.*+1/2—+-R,~_1/2P'.*_1/2
R 7ijk = 2R? :




Test: rotational stability

Test: rotational stability

: : - o : 10" T -

We investigate the stability of rotating disks using a power-law B 7;2:]:35

rotation profile, vs(R) = QoR~9, where q is the shear parameter. a 107 -—’—gf;g? 1
< =205

Rayleigh’s criterion for rotational stability 210t .
::: B T+++++++++++++++++++
o 107 - yoesr = s A e e U e VO VIRV ]

or [(RRQR)?] > 0 =k N *
= 10" o m
= q < 2 \/
10-10 1 1 1 1 1
That is, angular momentum must increase with radius for stability 0 50 100 oy P 20 300

with respect to angular velocity perturbations.
Figure: Mean dimensionless angular momentum transport as a function

of time in the Rayleigh rotational stability test for various values of q.
25 2

Test: rotating wind solution Test: Field Loop advection
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Figure: Convergence of the RMS error in the Li-norm for various levels of /
discretization in 1D, 2D and 3D. The domain includes the slow- and /
fast-magnetosonic and Alfvén transitions.

Figure: Magnetic field lines at t =0 and t = 2.
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Test: blast wave 1n strong field

DENSITY DENSITY PRESSURE PRESSURE

Figure: Contours of selected variables at time t = 0.02 for the 3D MHD
blast wave test with By = 10 and /3, = 0.02 using 2003 grid cells and the

cylindrical or Cartesian versions of Athena. Thirty equally spaced

contours between the minimum and maximum are drawn in each plot|
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Static Mesh Refinement

Motivation: Static nested-grids are ideal to refine midplane in
MHD studies of thin disks.

Density Angular momentum
fluctuations
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Application: global MHD disk simulation of MRI
Sorathia et al 2012

Resolution in R,®,Z is 480x1920x128 (32 zones per scale height),

evolution for 200 orbits at inner edge. =

Prolongation

* At internal fine/coarse mesh boundary, boundary
conditions for fine mesh must be interpolated from
coarse grid: prolongation

* Requires multidimensional, conservative
interpolation step.

* To keep div(B)=0, we use method of Toth & Roe
(2002)

32



Restriction

* In regions of overlap, the coarse grid solution
must be replaced by the fine grid solution
(averaged to the coarse grid): restriction

* Requires simple conservative average.
e Restriction dramatically reduces amount of data to
be passed between levels with MPI.

* Note: this means pressure (and temperature) is not
the same between levels. Can have a big effect on
microphysics. Danger, Will Robinson. Danger!
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Tests of SMR

Tested with the complete Athena MHD test suite.

Example: Linear wave convergence with fixed refinement region.
* Initialize pure eigenmode for each wave family
* Measure RMS error in U after propagating one wavelength
* quantitative test of accuracy of scheme

V, in fast magnetosonic wave

Grid has fixed fine-level region

Ty T
T T

No reflections at fine/coarse boundaries!

Flux-correction

At fine/coarse mesh boundaries, coarse grid fluxes
may not be equal to sum of fine grid fluxes.

This can break conservation across mesh hierarchy

Must update coarse grid cell at boundary using
fine grid fluxes: flux-correction

Must perform the CT update to correct field at
fine/coarse boundaries while keeping div(B)=0.
Implementation of correction with CT can be
complex.

34

Linear wave convergence: fixed grid and SMR.

L1 Error (Fast Wave)

L1 Error (Slow Wave
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Implementation

Details are given at:
https://trac.princeton.edu/Athena/wiki/AthenaDocsUG
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Summary

Grid codes generate solutions which are Galilean
invariant
Substantial changes are required for cylindrical
coordinates
Static mesh refinement for CT MHD has been
implemented but not for all physics options
Future:

* Generalized curvilinear coordinates (GR)

* Adaptive mesh refinement (AMR)
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