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Resources

• There are a number of excellent papers/reviews on SPH that discuss 
many of the problems with SPH...

Rosswog S., 2009, New Astron. Rev., 53, 78

Price D.J.,  2012, J. Comp. Phys., 231, 759

Reviews:

Papers: Cullen L. & Dehnen W., 2010, 408, 669

Hopkins P., 2013, MNRAS, 428, 2840

Read J.I., Hayfield T., 2012, MNRAS, 422, 3037 



Number of neighbours

• SPH approximates an integral over local 
properties with a sum over the 
neighbours.

• Compact support for the smoothing 
kernel.

• We try to fix the number of neighbours 
(say ~ 50 in 3D).

• Naïvely, we expect by increasing the 
neighbour number, we should better 
approximate the integral
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The smoothing kernel
  

Figure 6: The pairing instability in action: The (2D) setup is similar to that shown in Fig. 4 except that the particles are
initially placed on a close packed lattice and we use the M4 cubic spline kernel with a large ratio of smoothing length to particle
spacing (here ⌘ = 1.5, corresponding to ⇠ 28 and 100 neighbours in 2 and 3D respectively). After a few sound crossing times
(t = 5, centre panel) particles form ‘pairs’ which proceed to merge into a locally hexagonal “glass-like” lattice arrangement with
almost exactly half the resolution of the initial conditions (right panel, shown after 10 sound crossing times). Although fairly
benign – and easily avoided by a sensible choice of ⌘ – the pairing instability is the main reason one cannot simply “stretch”
the cubic spline to large neighbour numbers to achieve convergence. Instead, one should use a kernel with a larger radius of
compact support but the same ratio of smoothing length to particle spacing, such as the M5 or M6 splines.

1996b; Børve et al., 2004) that explicitly show that instability occurs – though with small energies – for
large h/�p.

Fig. 6 (and our example 3) shows the pairing instability in action: The setup is as for example 1 but with
⌘ = 1.5 in the cubic spline kernel instead of ⌘ = 1.2 and with particles placed initially on a hexagonal close-
packed lattice (an otherwise very stable configuration: left panel). After a few sound crossing times (centre
panel) particles begin to form pairs, with these pairs eventually merging completely (right panel) to give a
locally hexagonal “glass-like” configuration, but with exactly half the resolution of the initial conditions!

Though fixes have been proposed8, none are entirely satisfactory. However, the pairing instability, unlike
the tensile instability, is quite benign. For example the density change associated with the transition in
Fig. 6 is of order 1% for the cubic spline and 0.1% for the M6 quintic – but entails a factor-of-two loss in
spatial resolution and is therefore a waste of computational resources. Furthermore, it can be easily avoided
by a sensible choice of ⌘ (we recommend ⌘ = 1.2 for the B-spline kernels, corresponding to N

neigh

= 57.9
for the cubic spline in 3D). The pairing instability is the main reason one cannot simply “stretch” the cubic
spline to large neighbour numbers in order to obtain convergence and demonstrates at least one good reason
why ⌘ (or N

neigh

) should not be regarded as a free parameter in SPH simulations.

8Thomas and Couchman (1992) suggested modifying the gradient of the cubic spline kernel, using

w

0(q) = ��

8
>><

>>:

�1 0  q < 2/3;
�3q + 9

4 q
2
, 2/3  q < 1;

3
4 (2� q)2, 1  q < 2;
0. q � 2.

(85)

with W itself unchanged and � equal to the usual normalisation factor for the cubic spline (i.e., 1/⇡ in 3D). That is, the “hump”
is removed by simply making the kernel gradient constant within r/h < 2/3. Whilst it cures the pairing instability, one should
be careful about employing such a gradient in practice since the kernel gradient (85) is no longer correctly normalised (i.e.,
Eq. 67b no longer holds, even in the continuum limit) meaning that as the region within r/h < 2/3 is increasingly well sampled
the numerical sound speed and other quantities will be systematically wrong. Though one could attempt to re-normalise the
new gradient kernel, this results in a low weighting in the outer regions that in turn leads to poor gradient estimates.

Similarly, whilst perhaps a satisfactory ‘gradient kernel’ could be derived without a pairing instability, in the derivation from
a Lagrangian there is no freedom over the kernel gradient since it derives directly from the gradient of density – that is, if one
separates the gradient kernel from the density kernel then either the total energy (from Eq. 37) or the entropy will no longer
exactly be conserved (the latter if du/dt 6= P/⇢

2
d⇢/dt and thus dK/dt 6= 0 in Eq. 41).
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Close packed 
lattice with 
Nneigh ~100 

Particles start 
to pair up.

End up with 
about half the 
resolution you 
where aiming 

for...



The smoothing kernel
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Figure 2: The M4 (cubic, truncated at 2h), M5 (quartic, truncated at 2.5h) and M6 (quintic, truncated at 3h) Schoenberg
(1946) B-spline kernel functions (solid lines) and their first (long-dashed) and second (short-dashed) derivatives, compared to
the Gaussian (right panel and dotted lines in other panels). Notice that although the “number of neighbours” increases in
the M5 and M6 functions compared to the cubic spline, the smoothing scale h retains the same meaning with respect to the
Gaussian. Thus, using the higher order B-splines is a way to increase the smoothness of the kernel summations without altering
the resolution length, and is very di↵erent to simply increasing the number of neighbours under the cubic spline.

2.3. Kernel functions with compact support

There are many kernel functions which fit this bill. The most well-used (for SPH at least) are the
Schoenberg (1946) B-spline functions (Monaghan and Lattanzio, 1985; Monaghan, 1985, 2005), generated
as the Fourier transform

M
n

(x, h) =
1

2⇡

Z 1

�1


sin (kh/2)

kh/2

�
n

cos(kx)dk. (5)

These give progressively better approximations to the Gaussian at higher n, both by increasing the radius
of compact support and by increasing smoothness, since each function M

n

is continuous up to the {n�2}th
derivatives. Since we minimally require continuity in at least the first and second derivatives, the lowest
order B-spline useful for SPH is the M4 (cubic) spline truncated at 2h:

w(q) = �

8<:
1
4 (2� q)3 � (1� q)3, 0  q < 1;
1
4 (2� q)3, 1  q < 2;
0. q � 2,

(6)

where for convenience we use W (|r�r0|, h) ⌘ 1
h

dw(q), where q = |r�r0|/h and � is a normalisation constant
given by � = [2/3, 10/(7⇡), 1/⇡] in [1, 2, 3] dimensions. Next are the M5 quartic, truncated at 2.5h:
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(7)

with normalisation � = [1/24, 96/1199⇡, 1/20⇡], and the M6 quintic, truncated at 3h:

w(q) = �

8>><>>:
(3� q)5 � 6(2� q)5 + 15(1� q)5, 0  q < 1;
(3� q)5 � 6(2� q)5, 1  q < 2;
(3� q)5, 2  q < 3;
0. q � 3,

(8)
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Price (2012)
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Figure 2: The M4 (cubic, truncated at 2h), M5 (quartic, truncated at 2.5h) and M6 (quintic, truncated at 3h) Schoenberg
(1946) B-spline kernel functions (solid lines) and their first (long-dashed) and second (short-dashed) derivatives, compared to
the Gaussian (right panel and dotted lines in other panels). Notice that although the “number of neighbours” increases in
the M5 and M6 functions compared to the cubic spline, the smoothing scale h retains the same meaning with respect to the
Gaussian. Thus, using the higher order B-splines is a way to increase the smoothness of the kernel summations without altering
the resolution length, and is very di↵erent to simply increasing the number of neighbours under the cubic spline.
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The smoothing kernel

• If you want to use more neighbours, use a higher order kernel

• M6 (“quintic” kernel) truncates at 3h (not 2h, as in M4).

• Does not mean that the resolution is less!

Price (2012)



Random particle positions initially

Price (2012)



Can SPH capture shocks?

In one dimension

The first term in this equation bears similarities with the ‘‘standard”
artificial viscosity prescription, see Eq. (62), the second one ex-
presses the exchange of thermal energy between particles and
therefore represents an artificial thermal conductivity which
smoothes discontinuities in the specific energy. Such artificial con-
ductivity had been suggested earlier to cure the so-called ‘‘wall
heating problem” (Noh, 1987). Tests have shown that artificial con-
ductivity substantially improves SPH’s performance in simulating
Sedov blast waves (Rosswog and Price, 2007).

For non-relativistic hydrodynamics the maximum signal veloc-
ity between two particles can be estimated as Monaghan (1997)

vsig ¼ cs;a þ cs;b #~vab $ êab; ð70Þ

where cs;k is the sound velocity of particle k. Price (2008) had real-
ized that SPH’s difficulty to treat Kelvin–Helmholtz instabilities
across contact discontinuities with large density jumps (Agertz
et al., 2007) is closely related to a ‘‘blip” that occurs in the pressure
at the contact discontinuities.5 He suggested to use artificial conduc-
tivity only to eliminate spurious pressure gradients across contact
discontinuities and to this end suggested

vusig ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPa # Pbj

!qab

s

: ð71Þ

Clearly, this quantity has the dimensions of a velocity and vanishes
in pressure equilibrium. This approach has substantially improved
SPH’s ability to treat Kelvin–Helmholtz instabilities (Price, 2008).

To avoid conductivity where it is unwanted, one can follow
again a strategy with time-dependent parameters. For the artificial
viscosity one can use Eq. (64), and proceed in a similar way for au.
One can use the second derivative of the thermal energy,

Su;a ¼
hajr2ujaffiffiffiffiffiffiffiffiffiffiffiffiffi
ua þ !

p ; ð72Þ

to control the growth au. The second derivative can be calculated as
in Eq. (15), the parameter ! avoids that Su;a diverges as ua ! 0.

According to a recent analysis (Read et al., 2009), SPH’s diffi-
culty to treat Kelvin–Helmholtz instabilities results from a mis-
match in the sharpness of pressure and density across the
density jump. This can be either cured by generating entropy at
the boundary and thus smoothing the pressure as in Price (2008),
or by obtaining a sharper density estimate. By a combination of
using the freedom in discretization, see Section 2.5, a particular,
higher-order kernel and an entropy-weighted density estimate to-
gether with large neighbor numbers, (Read et al., 2009) also find
convincing results Kelvin–Helmholtz instability simulations.
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Fig. 4. Sod’s shock tube: the exact solutions are shown by the red line, the numerical solution obtained with SPH are shown as circles. For this simulation 1000 particles were
used, density was calculated via summation, and the smoothing lengths were updated according to ha ¼ 1:4ðma=qaÞ. For this test a second-order Runge–Kutta integrator was
used.

Fig. 5. Illustration how the ‘‘standard” SPH artificial viscosity introduces spurious
shear forces: in this pure shear flow the difference position vector has a finite
projection on the difference velocity vector (red) and thus introduces unwanted
forces.

5 It is not visible in our Sod shock tube in Fig. 4 since we had started from smoothed
initial conditions.

88 S. Rosswog /New Astronomy Reviews 53 (2009) 78–104

• Standard SPH uses 
artificial viscosity (AV) to 
treat shocks.

• Good match with the 
analytical solution.

• SPH smooths out the 
discontinuities to around 
a few h. 

• Not as sharp as a high 
order grid code. Rosswog (2009)



In higher dimensions
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Figure 10: The Sod shock tube in 2D. Using the cubic spline kernel (left panel), there is additional ‘noise’ in the 2D velocity
field (compared to 1D, Fig. 9) due to the transverse “remeshing” motions of particles behind the shock front in multidimensions
(see Fig. 5). However, this can be quite e↵ectively minimised by using a smoother kernel (right panel, using the M6 quintic).

where the second term, from (91), can be directly interpreted as ar2u term. Note that the signal velocity vu
sig

used in the artificial conductivity does not have to be the same as that used for the viscosity. In particular,
Price (2008) proposed using vu

sig

=
p|P

a

� P
b

|/⇢̄
ab

to equalise the pressure across contact discontinuities,
whilst Wadsley et al. (2008) proposed a conductivity term equivalent to using vu

sig

= |v
ab

· r̂
ab

| (we adopt
the former for the tests shown in this paper).

6.3.3. Switches for viscosity terms
One of the key issues in practice is to ensure that su�cient dissipation is applied to discontinuities, but

that such dissipation is e↵ectively turned o↵ in smooth parts of the flow by designing appropriate switches.
Morris and Monaghan (1997) suggested allowing the parameter ↵ to be individual to each particle, with an
evolution equation of the form

d↵

dt
= S +

↵� ↵
min

⌧
; ⌧ =

h

�c
s

, (105)

where S is a source term that grows large at the discontinuity [e.g. S = max(0,�r · v) for shocks], ⌧
is the decay time, set such that ↵ decays to ↵

min

over several smoothing lengths (typically � = 0.1 and
↵
min

= 0.1). A similar switch can be employed for the thermal conductivity parameter ↵
u

, with Price and
Monaghan (2005) adopting a source term given by S

u

= 0.1hr2u. More sophisticated switches for shock
detection are also possible, with a promising recent alternative suggested by Cullen and Dehnen (2010).
Directly employing the Riemann solution is another possibility (e.g. Inutsuka, 2002; Cha and Whitworth,
2003).

6.3.4. Examples 4 and 5: One and two dimensional shock tubes, and Kelvin-Helmholtz instabilities
Two specific examples of the dissipative terms in practice are shown in Figs. 8 (applying only viscosity)

and 9 (applying artificial viscosity and conductivity), showing the results of a one dimensional Sod shock
tube problem (left subfigure) and a two dimensional Kelvin-Helmholtz (K-H) instability problem (right
subfigure). The 1D shock tube is setup using a total of 450 particles in �0.5 < x < 0.5 with conditions to
the left of the origin given by [⇢

L

, P
L

, v
L

] = [1, 1, 0] and to the right by [⇢
R

, P
R

, v
R

] = [0.125, 0.1, 0] with
� = 5/3. Importantly, purely discontinuous initial conditions are employed so that the contact discontinuity
is not already smoothed. The K-H instability problem is setup with a 2:1 density ratio and equal mass
particles, identical to the setup described in Price (2008) and using 512 ⇥ 512 particles in the low density
fluid. Whilst shocks are smoothed by the artificial viscosity term (Figs. 8 and 9), with only viscosity the
jump in thermal energy at the contact discontinuity is not treated, resulting in a ‘blip’ in the pressure profile
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Sod shock (2D) M4 “cubic spline” kernel

Price (2012)



Re-meshing...

Price (2012)



  












  








Figure 5: Particle settling in a two dimensional shock tube problem. The particles are initially arranged on hexagonal close
packed lattices either side of the shock (top panel). As the shock propagates (bottom panel, showing t = 0.1) it induces a
one dimensional compression in the particles and thus a highly anisotropic particle arrangement, which “remeshes” to a more
isotropic arrangement downstream from the shock, involving small motions of particles in the y�direction.

5.3. Corollary: Negative pressures and the tensile instability

The corollary of the above is that the particles require a positive pressure in order to remain ordered. If
the net pressure (or stress) becomes negative, the net force between a particle pair will become attractive,
causing a catastrophic numerical instability. For example, with a pressure gradient of the form

dv
a

dt
= �

X
b

m
b

✓
P
a

� P0

⇢2
a

+
P
b

� P0

⇢2
b

◆
r

a

W
ab

, (84)

the pairwise force will become negative when P0 > P , and in this situation the particles clump together
unphysically. This is known as the ‘tensile instability’ (Monaghan, 2000) and occurs in SPH when a stress
tensor is employed that can result in (physically) negative stresses. In particular, this is the case for MHD
(Phillips and Monaghan, 1985) and in elastic dynamics (Gray, Monaghan, and Swift, 2001). The occurrence
of the tensile instability was one of the main initial di�culties with the development of MHD in SPH and
is discussed in detail in Sec. 8.

5.4. The pairing instability: Why one cannot simply use ‘more neighbours’.

Another, more benign, instability in the particle distribution occurs with the cubic spline and other
bell-shaped kernels depending on the ratio of smoothing length to particle spacing. This is due to the shape
of the kernel gradient term for these kernels (see Fig. 2), and is a consequence of the fact that these kernels
are designed to give good density estimates (Sec. 2.2), rather than necessarily being the best choice for
calculating gradients. In particular, the kernel gradient in these kernels contains a maximum (negative)
value at r/h ⇠ 2/3 and tends to zero at the origin (Fig. 2). This characteristic is desirable for a good
density estimate – as it means one is insensitive to a small change in the position of a near neighbour – but
means that the mutual repulsive force tends to zero for neighbouring particles placed “within the hump” of
the kernel gradient. The net result is that two particles spaced closer than the location of the “hump” in
the gradient form a “pair”, eventually falling on top of each other.

For the cubic and other B-spline kernels complete merging occurs when h & 1.5�p (i.e., ⌘ & 1.5 or
& 100 Neighbours in 3D for the cubic spline), corresponding to the placement of the first neighbour “inside
the hump”. There is also an intermediate regime 1.225 . ⌘ . 1.5 (62–100 Neighbours in 3D) where a
close-packed or cubic lattice is unstable to pair formation, but where the pairs do not completely merge.
These empirical regimes are confirmed by detailed stability analysis of the SPH equations in 2D (Morris,
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• Re-meshing after the shock introduces errors in the velocity.

• You can’t see this in 1D, since there’s no free direction into 
which the particles can move.



Can we fix this?
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Figure 10: The Sod shock tube in 2D. Using the cubic spline kernel (left panel), there is additional ‘noise’ in the 2D velocity
field (compared to 1D, Fig. 9) due to the transverse “remeshing” motions of particles behind the shock front in multidimensions
(see Fig. 5). However, this can be quite e↵ectively minimised by using a smoother kernel (right panel, using the M6 quintic).

where the second term, from (91), can be directly interpreted as ar2u term. Note that the signal velocity vu
sig

used in the artificial conductivity does not have to be the same as that used for the viscosity. In particular,
Price (2008) proposed using vu

sig

=
p|P

a

� P
b

|/⇢̄
ab

to equalise the pressure across contact discontinuities,
whilst Wadsley et al. (2008) proposed a conductivity term equivalent to using vu

sig

= |v
ab

· r̂
ab

| (we adopt
the former for the tests shown in this paper).

6.3.3. Switches for viscosity terms
One of the key issues in practice is to ensure that su�cient dissipation is applied to discontinuities, but

that such dissipation is e↵ectively turned o↵ in smooth parts of the flow by designing appropriate switches.
Morris and Monaghan (1997) suggested allowing the parameter ↵ to be individual to each particle, with an
evolution equation of the form

d↵

dt
= S +

↵� ↵
min

⌧
; ⌧ =

h

�c
s

, (105)

where S is a source term that grows large at the discontinuity [e.g. S = max(0,�r · v) for shocks], ⌧
is the decay time, set such that ↵ decays to ↵

min

over several smoothing lengths (typically � = 0.1 and
↵
min

= 0.1). A similar switch can be employed for the thermal conductivity parameter ↵
u

, with Price and
Monaghan (2005) adopting a source term given by S

u

= 0.1hr2u. More sophisticated switches for shock
detection are also possible, with a promising recent alternative suggested by Cullen and Dehnen (2010).
Directly employing the Riemann solution is another possibility (e.g. Inutsuka, 2002; Cha and Whitworth,
2003).

6.3.4. Examples 4 and 5: One and two dimensional shock tubes, and Kelvin-Helmholtz instabilities
Two specific examples of the dissipative terms in practice are shown in Figs. 8 (applying only viscosity)

and 9 (applying artificial viscosity and conductivity), showing the results of a one dimensional Sod shock
tube problem (left subfigure) and a two dimensional Kelvin-Helmholtz (K-H) instability problem (right
subfigure). The 1D shock tube is setup using a total of 450 particles in �0.5 < x < 0.5 with conditions to
the left of the origin given by [⇢

L

, P
L

, v
L

] = [1, 1, 0] and to the right by [⇢
R

, P
R

, v
R

] = [0.125, 0.1, 0] with
� = 5/3. Importantly, purely discontinuous initial conditions are employed so that the contact discontinuity
is not already smoothed. The K-H instability problem is setup with a 2:1 density ratio and equal mass
particles, identical to the setup described in Price (2008) and using 512 ⇥ 512 particles in the low density
fluid. Whilst shocks are smoothed by the artificial viscosity term (Figs. 8 and 9), with only viscosity the
jump in thermal energy at the contact discontinuity is not treated, resulting in a ‘blip’ in the pressure profile
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Figure 4: Settling of an initially random particle distribution due to pairwise conservation of momentum in the pressure
gradient. The left and centre columns show the results with the standard (Hamiltonian) SPH method, both without (left) and
with (centre) artificial viscosity, after 0.5 (top) and 10 (bottom) sound crossing times. The right column shows the results when
a “relative pressure” formulation is adopted. With a momentum-conserving force the particles are sensitive to their arrangement
and will regularise accordingly (left and centre columns), whereas “more accurate” but non-conserving formulations (right)
compute gradients that are insensitive to the particle arrangement and thus require explicit re-meshing procedures. Note that
although the application of artificial viscosity helps the settling to proceed faster (centre), it is primarily a pressure-driven
e↵ect and occurs even if no viscosity is applied (left).

settles rapidly into a regular particle distribution (left and centre columns), leading in turn to good gradient
estimates. This settling occurs even in the absence of an artificial viscosity term (left panels), though adding
viscosity does help speed the settling process (centre panels). However, using a “more accurate” but non-
conservative gradient estimate there is no regularisation of the particle distribution, leading to poor gradient
estimates due to the random nature of the particle distribution. The total energy is also conserved exactly
by the SPH formulations, whilst in the relative pressure formulation the total energy grows exponentially.

5.2. Example 2: A 2D shock tube

The other “classic” example of particle settling is the behaviour of SPH particles in a multidimensional
shock tube problem, where there is a 1D compression of the particle distribution (e.g. along the x axis). Since
the shock induces a highly anisotropic compression – and thus a highly non-preferred particle arrangement
– the mutual repulsion of SPH particles will eventually produce a post-shock “remeshing” of the particle
distribution, involving transverse motions of the particles. An example is given in Fig. 5, showing the particle
distribution at t = 0.1 in a two dimensional Sod shock tube problem (described further in Sec. 6.3.4) in
which the particles were initially placed on two hexagonal close packed lattices upstream and downstream
of the shock (initially placed at the origin). The particles can be seen to “break” (at x ⇡ 0.14) from
the highly anisotropic compression-induced ‘lines’ at 0.14 . x . 0.19, leading to a more isotropic particle
distribution further downstream (x . 0.12). This example also illustrates the fact that one inevitably has
some motions at the resolution scale that are not related to the physical problem, but related to the implicit
“regularisation” of the particle distribution present in locally conservative SPH formulations.
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particle distribution.

• AV helps to regularise the 
particle noise.
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t = 1 t = 1

Price (2012)
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Price & Federrath (2009)

Particle penetration and high Mach number shocks

Take care 
with 

viscosity at 
high Mach 
numbers!

�AV = 1 �AV = 2 �AV = 4

TURBULENCE:  Theory

• Kolmogorov (1941):

˙E =

�v3L
L

= const

Ekin / v2L / L2/3 / k�2/3

vL / L1/3

E(k) =
dEkin

dk
/ k�5/3

• Kritsuk et al. (2007):

(for incompressible 
turbulence)

˙E =

�⇥v3L
L

= const

�1/3vL / L1/3

(�1/3vL)
2 / L2/3 / k�2/3

E(k) = d(�1/3vL)2

dk
� k�5/3

(for compressible and 
supersonic turbulence)
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Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically $ = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to %ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and $ = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A N OV E L A RT I F I C I A L V I S C O S I T Y S C H E M E

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.
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Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically $ = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to %ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and $ = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A N OV E L A RT I F I C I A L V I S C O S I T Y S C H E M E

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.
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Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically $ = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to %ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and $ = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A N OV E L A RT I F I C I A L V I S C O S I T Y S C H E M E

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.
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Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically $ = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to %ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and $ = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A N OV E L A RT I F I C I A L V I S C O S I T Y S C H E M E

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.
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than the M&M method. In fact, the agreement between our method
and the high-resolution grid code is as good as one can possibly
expect at the given resolution, in particular the velocity plateau and
density amplitude around x = 0 in the υa = 2 case (bottom) are
correctly modelled.

4.3 2D Keplerian-ring test

In this test, a gaseous ring orbits a central point mass, neglecting the
self-gravity of the gas. Initially, the ring is in equilibrium: pressure
forces, attraction by the point mass and centrifugal forces balance
each other. The Keplerian differential rotation implies that the flow
is shearing and any viscosity causes the ring to spread (Lynden-
Bell & Pringle 1974). This is indeed what Maddison, Murray &
Monaghan (1996) found in SPH simulations without pressure
forces.

Maddison et al. also found an instability to develop from the inner
edge, which quickly breaks up the ring. They argue convincingly
that this is the viscous instability (Lyubarskij, Postnov & Prokhorov
1994), which causes eccentric orbits at the inner edge of the ring to
become more eccentric due to the viscous deceleration peaking at
apocentre.

Imaeda & Inutsuka (2002) performed SPH simulations of the
same problem but including pressure forces. They find a similar
break-up of the ring after only few rotations and blame it on an in-
adequacy of the SPH scheme itself. We strongly suspect that Imaeda
& Inutsuka encountered a form of the clumping instability, which
appears to be particularly strong in 2D simulations of strong shear
flows (though it may have been a dynamical instability inherent
to gaseous Keplerian rings, e.g. Papaloizou & Pringle 1984, 1985;
Goldreich & Narayan 1985). This numerical instability grows on
a local hydrodynamical time and may therefore be suppressed by
choosing the sound speed c much lower than the rotation speed
υϕ . Indeed, Price (2004) and Monaghan (2006), who repeated these

and similar experiments with a very low sound speed, found no
such numerical instabilities. A detailed investigation of these issues
is clearly beyond the scope of our study and we merely compare
our new scheme to previous methods for pressure forces with c !
υϕ when the viscous instability should strike after few rotations
depending on the strength of the artificial viscosity.

In our test, GM = 1000 for the central point mass, while the gas
ring has Gaussian surface density centred on r = 10 with width
(standard deviation) 2.5 represented by N = 9745 particles ini-
tially placed according to the method of Cartwright, Stamatellos &
Whitworth (2009). This implies an orbital period of 2π and veloc-
ity of υϕ = 10 at the ring centre. We choose a sound speed of c =
0.01 ! υϕ to ensure that any dynamical instabilities of inviscid
rings become important only after many periods.

Fig. 8 shows the particle distributions at various times for dif-
ferent SPH schemes. Only with our new method, the rings stay
in their initial equilibrium configuration over at least five periods,
while for the other methods, the inner parts of the ring soon be-
come disordered leading to a catastrophic break-up after a few
periods. It is noteworthy that this failure occurs despite the Bal-
sara switch, which was designed specifically for applications like
this.

Note that without the viscosity limiter ξ of equation (18), our
novel method fails, precisely because of shear causing false de-
tections of flow compression (as highlighted in Section 3.3 and
Appendix B).

We also run similar tests with the central point mass replaced by
a mass distribution (Plummer sphere or Kuzmin disc) with gravi-
tational potential $ = −GM/

√
r2 + s2 with s = 3, such that the

rotation curve of the disc also contains a rising part, similar to the
situation in galactic discs. The outcome of these simulations (not
shown) is essentially identical to that for the pure Keplerian rings:
only our new method with viscosity limiter does not fall prey to the
viscous instability.

Figure 8. Keplerian ring test: particle positions at various times for standard SPH with Balsara switch, the M&M method with and without Balsara switch
and our new method without and with the viscosity limiter ξ of equation (18). Only for this last method the ring remains stable against a viscosity-induced
instability. (Ring-like features at r ! 2 are artefacts caused by the dynamical time close to the centre being short compared to the time-step.)

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 669–683



A brutal test...
.

v
x

= Ac
s

sin(2⇡y/L)

• Uniform periodic box with a 
shearing velocity: 

Relative Pressure SPH 13

Figure A1. Uniform density shear test. Top: The solid line gives
the amplitude of the uniform initial x velocity modulated as a

function of y. The underlying histogram is the particle distribu-

tion after four sound crossing times when using a viscosity param-
eter � = 1. It looks slighlty better for the lower artificial viscosity

parameter of � = 1/10 but leads to larger vertical velocity pertur-

bations. Bottom: Entropy of the particles in a 2002 run showing
bands of the material that received the entropy (P/⇤�) in the

2002 run with � = 1. The values are plotted as squares with side

lengths of half the SPH smoothing length.

in that it decreases the amplitude of the forces leading to
the y velocities.

Interestingly the uniform density tests presented here
are similar as the one presented by Monaghan (2006) in
terms of the velocity profile and in the sense that it is a
low mach number flow. Monaghan (2006), however, chose
to pick ⇥ = 7 making the EOS very sti⇥. While this may
be a useful trick to model incompressible flow with SPH it
is not something we repeat here since for most applications

in astrophysics we have 1 <⌃ ⇥ <⌃ 5/3. However, even with
the sti⇥ equation of state his Figure 2 shows the same clip-
ping of the maximal velocity amplitudes as our Figure A1
after only one crossing time. This agrees with our findings
that only for short time scales (as compared to the crossing
time) the shear viscosity may be negligible. We just di⇥er in
the interpretation of whether this is an acceptable level of
dissipation or not.

A seemingly similar test was presented by Imaeda and
Inutsuka (2002) but in the highly supersonic limit. This is
also a very important regime, in particular in the context
of thin accretion disks in star, planet and black hole forma-
tion. However, discretization noise can quickly lead to very
large density variations exciting a large range of modes giv-
ing a nonlinear solution far from ones initial homogeneous
expectation. It is a pity that none of these studies report
the number of neighbors they employed. We learned above
that this parameter is even more relevant than the viscosity
parameter chosen. Perhaps the large discrepancies in those
two studies on the same test could be explained if Imaeda
and Inutsuka (2002) had used significantly fewer neighbors
than Monaghan (2006) and/or perhaps let the number of
neighbors vary dramatically during their calculations.

APPENDIX B: MODIFYING GADGET-2.0.4 TO
RPSPH

For the convenience of other researchers we give the details
of what to do to convert Gadget-2.0.41 to take advantage
of the rpSPH discretization. In hydra.c find the line that
reads

hfc = h f c v i s c + P[ j ] . Mass⇥( p ov e r r h o2 i ⇥dwk i

+ p ov e r r ho2 j ⇥dwk j )/ r ;

and change it to

hfc = h f c v i s c+P[ j ] . Mass/SphP [ j ] . Density ⇥
(SphP [ j ] . Pressure�pre s su r e )/SphP [ j ] . Density ⇥
( dwk j+dwk i )/ r /2 ;

and the conversion is complete.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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summation noise.



Resolving instabilities: KH
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A cure:

• Introduce a conductivity term (Price 
2008; Wadsley).

• Removes the pressure blip by fluxing 
thermal energy (entropy) between the 
two states.

• Acts to work against the pressure 
gradient.

To examine the effect of numerical resolution on the results, the five cases discussed above are presented at higher res-
olution (using D = 1/512 in the least-dense component) in Fig. 7. Comparison of case 1 (top row) shows that the artificial
surface tension effect is not significantly modified by simply using more particles, although the size scale of the ‘‘blobs”
and ‘‘bubbles” of dense fluid which break off into the less-dense component are somewhat smaller. Again, adding artificial
viscosity acts to suppress the growth of velocity perturbations (case 2, second row), although in this case some perturbations
are visible at earlier times compared to Fig. 5, suggesting that the effect of viscosity is lessened (which we expect since the
artificial viscosity diffusion coefficient is linearly proportional to the particle spacing). The RT01 method also improves at this
resolution, showing clear growth in both the k = 1/6 mode and the k = 1/2 mode (the latter not well resolved in the lower

Fig. 7. Results of the Kelvin–Helmholtz instability test using a density ratio of 2:1 as in Fig. 5 but here using an initial particle spacing of D = 1/512 in the
least-dense component. The results are similar to Fig. 5, namely that adding the artificial thermal conductivity term gives a dramatic improvement in SPH’s
ability to resolve the Kelvin–Helmholtz instability.
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Price (2008)

sph

sph + AC

add dissipation terms to the SPH equations which diffuse discontinuities on the smoothing scale such that they are resolved
by the numerical method (and thus no longer ‘‘discontinuous”). A general formulation of such dissipative terms was pre-
sented by Monaghan [14] in a comparison of SPH to grid-based codes incorporating Riemann solvers. Whilst the usual ap-
proach taken in SPH is to simply add an artificial viscosity term to the momentum equation, Monaghan [14] noted that, by
analogy with Riemann solvers, the evolution equation for every conservative variable should contain a corresponding dissi-
pation term in its evolution related to jumps in that variable, leading naturally to formulations of dissipative terms for ultra-
relativistic shocks [5] and for Magnetohydrodynamics (MHD) [22,24] in SPH.

3.2.1. Hydrodynamics
For a non-relativistic gas the dissipation terms for the evolved variables in conservative form (namely the conserved

momentum and energy per unit mass, v and e ¼ 1
2 v2 þ u, respectively) take the form [14]

dvi

dt

! "

diss
¼
X

j

mj
avsigðvi $ vjÞ & r̂ij

!qij
riWij; ð24Þ

dei

dt

! "

diss
¼
X

j

mj
ðe'i $ e'j Þ

!qij
r̂ij &riWij; ð25Þ

where the bar over the kernel refers to the fact that the kernel must be symmetrised with respect to h, i.e.

rWij ¼
1
2
rWijðhiÞ þrWijðhjÞ
# $

; ð26Þ

and the energy variable e'i ¼ 1
2 avsigðvi & r̂ijÞ2 þ auvu

sigui refers to an energy including only components along the line of sight
joining the particles with different parameters (a, au) specifying the dissipation applied to each component. The choice of
signal speed vsig is discussed below (Section 3.2.3). Note, however, that in this paper we have deliberately distinguished be-
tween the signal velocities used for the kinetic energy term vsig and that used for the thermal energy term (vu

sig), for reasons
that will become clear. This differs from previous formulations (e.g. [14,22,24]) which have assumed that the same signal
velocity is used to treat jumps in all variables.

Eq. (24) in the Monaghan [14] formulation provides an artificial viscosity term similar to earlier SPH formulations (e.g.
[13] – the two formulations differ only by a factor of h/jrijj). Eq. (25) is more interesting, since (as discussed by Monaghan
[14]) it shows that the evolution of the total energy should contain not only a term relating to jumps in kinetic energy
(i.e. the thermal energy contribution from the viscosity term) but also a term relating to jumps in thermal energy. This is
more explicitly obvious if we consider the evolution of the thermal energy resulting from the above formulation, i.e.

du
dt
¼ de

dt
$ v & dv

dt
; ð27Þ

which, using (24) and (25) gives

du
dt

! "

diss
¼ $

X

j

mj

!qij

1
2
avsigðvij & r̂ijÞ2 þ auvu

sigðui $ ujÞ
% &

r̂ij &riWij: ð28Þ

The term involving (ui $ uj) provides an artificial thermal conductivity which acts to smooth discontinuities in the thermal
energy. The need for such an artificial thermal conductivity contribution in order to resolve discontinuities in thermal energy
is almost universally ignored in SPH formulations.

The effect of applying different types of dissipation to specific discontinuities is discussed in the MHD case by Price and
Monaghan [24] and in the hydrodynamic case by Price [20]. The point made in these papers is that every physical discon-
tinuity requires an appropriate treatment. For example in hydrodynamics, shocks are treated by the application of artificial
viscosity terms but accurate treatment of contact discontinuities requires the addition of artificial thermal conductivity to
treat the jump in thermal energy. In the MHD case discontinuities in the magnetic field are treated separately by the appli-
cation of artificial resistivity. We discuss the hydrodynamic case in more detail below and in the shock tube tests presented
in Section 4.1. In Section 4.2 we show how these results have a direct bearing on the problems encountered when trying to
simulate Kelvin–Helmholtz instabilities across density jumps in SPH.

3.2.2. Interpretation of dissipative terms
The dissipation terms introduced by Monaghan [14] can be interpreted more generally as ‘‘discontinuity-capturing”

terms. Interpreted as such, for any conservative variable (i.e. such that
P

jmjdAj=dt ¼ 0) that is evolved via a differential equa-
tion one would expect to add a dissipation term of the general form (for a scalar quantity A)

dAi

dt

! "

diss
¼
X

j

mj
aAvsig

!qij
ðAi $ AjÞr̂ij &rWij; ð29Þ

where aA is a parameter of order unity specifying the amount of diffusion to be added to the evolution of A. The interpreta-
tion of (29) can be seen by considering the SPH expression for the Laplacian in the form (e.g. [2]).
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ðr2AÞi ¼ 2
X

j

mj
ðAi $ AjÞ

qj

Fij

jrijj
; ð30Þ

where the scalar function Fij is the dimensionless part of the kernel gradient such that rWij ¼ r̂ijFij and thus r̂ij %rWij & Fij.
We then see that (29) is simply an SPH representation of a diffusion term of the form

dA
dt

! "

diss
' gr2A; ð31Þ

with a diffusion parameter g proportional to the resolution length1

g / avsigjrijj: ð32Þ

3.2.3. Choosing the signal velocity
In previous formulations [14,23,24] the signal speed vsig used in both the artificial viscosity and conductivity terms is cho-

sen to be an estimate of the magnitude of the maximum signal velocity between a particle pair, an estimate for which (for
non-relativistic hydrodynamics) is given by Monaghan [14]

vsig ¼
1
2

ci þ cj $ bvij % r̂ij
# $

; ð33Þ

where c is the sound speed and generally b = 2. However, whilst using a signal velocity based on the sound speed and relative
particle velocities is appropriate at shocks (which travel at the sound speed and involve strong compression), it is not clear
that the same signal velocity should be used to treat contact discontinuities (where there is no compression and the motion
is at the post-shock velocity). A good example is to consider the simplest case of two regions with different densities and
temperatures in pressure equilibrium. Applying artificial thermal conductivity using a signal velocity proportional to the
sound speed would result in a steady diffusion of the initial discontinuity in thermal energy, which as t?1would have com-
pletely eliminated the temperature gradient between the two regions.

A much better approach suggested by the shock tube results discussed in Section 4.1 is to apply artificial conductivity only
in order to eliminate spurious pressure gradients across contact discontinuities. In order to do so we require a signal velocity
which vanishes when the pressure difference between a particle pair is zero. We propose the following

vu
sig ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPi $ Pjj

!qij

s

; ð34Þ

which is constructed to have dimensions of velocity and to be zero once pressure equilibrium is reached.2 We find that this is
a very effective approach to introducing artificial thermal conductivity into SPH in a controlled manner to appropriately treat
contact discontinuities without the side-effect of unwanted diffusion elsewhere. This is particularly the case in the Kelvin–
Helmholtz tests discussed in Section 4.2.

3.2.4. Reducing dissipation away from discontinuities
The key problem with using dissipative terms for capturing discontinuities is that such terms also tend to dissipate gra-

dients which are not purely discontinuous. This is a particular problem in relation to artificial thermal conductivity, since
whilst shocks are continually steepened by the propagating wave, a gradient in thermal energy, once diffused, will remain
diffused forever. The art is therefore to come up with well-designed switches that turn the dissipation terms off away from
discontinuities.

In this paper we adopt the artificial viscosity switch suggested by Morris and Monaghan [18], where the viscosity param-
eter a is different for every particle and evolved according to a simple source and decay equation of the form

dai

dt
¼ $ai $ amin

si
þ Si; ð36Þ

such that in the absence of sources S, a decays to a value amin over a timescale s. The timescale s is calculated according to

1 Note that whilst the resolution length appears as the particle spacing, this is similar to the smoothing length since within the kernel radius jrijj/h < 2.
2 Whilst this paper was in review, Wadsley et al. [29] had recently also proposed adding a thermal conductivity term in the context of cosmological SPH

simulations, though somewhat differently motivated by analogies with sub-grid models for turbulence. We note that their formulation is equivalent to using a
signal velocity for conductivity of the form

vu
sig ¼ jðvi $ vjÞ % r̂ijj: ð35Þ

In this case thermal conductivity is zero at a contact discontinuity unless there is also relative motion (e.g. a shear flow). Thus their formulation does not
resolve the ‘‘wall-heating” problems in the shock tube tests presented in this paper but gives almost indistinguishable results to (34) on the Kelvin–Helm-
holtz problem (since both signal velocities effectively turn the thermal conductivity term on at the contact discontinuity in this case). For self-gravitating
problems (35) may be a better choice as conductivity would remain off in the case of hydrostatic equilibrium.
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Solving the mixing problem



• Use a different definition of the density, which is derived from the 
pressure.

• Recast the momentum equation so that it is not as sensitive to 
the density.

si ¼
hi

Cvsig
; ð37Þ

where h is the particle’s smoothing length, vsig is the maximum signal propagation speed for particle i (i.e. the maximum over
pairs involving i of the pairwise vsig defined in Eq. (33) and C is a dimensionless parameter which we set to C ¼ 0:1 which
means that the value of a decays to amin over $5 smoothing lengths. In general we also impose a maximum value of amax = 1
throughout the evolution. In the dissipation terms (24) and (28) the average value on the particle pair a ¼ 1

2 ðai þ ajÞ is used
to maintain symmetry.

The source term S is chosen such that the artificial dissipation grows as the particle approaches a shock front. We use, as
in [18],

S ¼ maxð&r ' v; 0Þ; ð38Þ

such that the dissipation grows in regions of strong compression.
A similar switch for the artificial thermal conductivity was introduced by Price and Monaghan [24] (see also [20]), where

the controlling parameter au is evolved according to (36) with the minimum value au,min set to zero and a source term based
on a second derivative of the thermal energy,

Si ¼
hijr2ujiffiffiffiffiffiffiffiffiffiffiffiffiffi

ui þ !
p ; ð39Þ

where h is the smoothing length, ! is a small number to prevent divergences for small u and the second derivative term is
computed using the standard SPH formulation for the Laplacian (Eq. (30)). Note that the decay timescale s in this case is kept
the same as for the viscosity, i.e. using (33). In this paper we find that the combination of our new vu

sig and the above switch
are very effective at turning the conductivity off away from discontinuities (in fact with the new vu

sig the switch is almost
unnecessary).

3.3. Alternative approaches

Ritchie and Thomas [26] (hereafter RT01) suggested an alternative approach to dealing with problems with contact dis-
continuities in multiphase calculations based on a smoothed estimate of pressure. In their formulation the SPH force equa-
tion takes the form (modified here slightly to assume an adiabatic equation of state and in the form of the symmetry of the
kernels with respect to the smoothing length)

dvi

dt
¼ ð1& cÞ

X

j

mj
uj

hqii
rWijðhiÞ þ

ui

hqji
rWijðhjÞ

" #
; ð40Þ

which, translated, is an SPH form of

dvi

dt
¼ & rP

q þ
P
qr1

" #
: ð41Þ

The mean density hqi used in the force term is derived from a smoothed pressure estimate, in the form

hqii ¼
hPii

ðc& 1Þui
¼
P

jmjujWijðhiÞ
ui

: ð42Þ

The motivation behind this formulation was to compute the pressure force without the SPH density explicitly appearing in
the equations, in order to better handle pressure profiles across strong density gradients. We compare the results of this for-
mulation with the standard SPH equations (and to our formulation using artificial thermal conductivity) in Section 4.2 (note
that for the comparison in this paper we use the smoothing length calculated by iteration with the usual SPH density esti-
mate as described in Section 2). We indeed find an improvement in pressure continuity at discontinuities using their formu-
lation, though at the expense of considerable particle noise at the interface.

Marri and White [12] had also proposed a modified SPH formulation for multiphase flows, in the form of several some-
what ad hoc criteria for excluding particles from one another’s neighbour lists. It is however difficult to see how their method
can be adopted into a consistent Lagrangian formulation of the SPH equations, particularly since the total energy and/or
momentum could arbitrarily change between timesteps as particle pairs are excluded (or not) from the calculation. Further-
more the first of their exclusion criteria is that the density contrast should be greater than 10, whereas problems with resolv-
ing the Kelvin–Helmholtz ability occur for much smaller density ratios (as demonstrated in Section 4.2) where their
proposed modifications would have no effect. Thus we do not consider their formulation any further here.

4. Tests

Whilst there are many problems for which the incorporation of an artificial thermal conductivity in SPH is a crucial
requirement (e.g. Rosswog and Price [27] found significantly improved results on Sedov blast wave tests when such a term
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can be adopted into a consistent Lagrangian formulation of the SPH equations, particularly since the total energy and/or
momentum could arbitrarily change between timesteps as particle pairs are excluded (or not) from the calculation. Further-
more the first of their exclusion criteria is that the density contrast should be greater than 10, whereas problems with resolv-
ing the Kelvin–Helmholtz ability occur for much smaller density ratios (as demonstrated in Section 4.2) where their
proposed modifications would have no effect. Thus we do not consider their formulation any further here.

4. Tests
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Prevent SPH from seeing the blip in the first place:

Solving the mixing problem

Ritchie & Thomas:

• Saitoh & Makino (2012) and Hopkins (2013) take a similar approach. 

• Have a more conservative form of the equations than Ritchie and 
Thomas.



Hopkins (2013)



Is this a fair test?

• In many respects this is an ‘unfair’ test for SPH, as it starts 
with ICs that are alien to the formalism.

• When the density contrast is abrupt, grid codes also have 
problems converging.

• Primary roll displays secondary rolls -- seeded by grid noise.

• McNally et al. 2012 propose to smooth the ICs.

• SPH can handle this better (but AC or the pressure fix is still 
recommended.)



Tom Abel’s ‘fix’

• Tries to only do the particle forces when there is a pressure 
gradient.

Abel (2012)

2 Tom Abel

2 RELATIVE PRESSURE SPH

The equation of motion without viscous or gravitational
forces in essentially all SPH codes and Gadget-2 (Springel
and Hernquist 2002; Springel 2005), in particular, is

d.vi
dt

= �
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✏hi
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and the abbreviation Wij(h) = W (|.ri�.rj |, h) has been used
for the kernel function, W . It employs variable smoothing
lengths so that the number of neighbours for each particle
with |.rij | � hi is maintained at a nearly fixed value Nsph.
The compact cubic spline kernel is used which is summarized
Monaghan (1992), extends to radii as large as the smooth-
ing length h and is zero outside. While many choices would
exist to use a di⇥erent discretisation here (Monaghan 1992;
Rosswog 2009) most previous work we have found essen-
tially retains a form very close to equation (2) or uses an-
other symmetric form that sums over (Pi + Pj)(�i�j). The
reason previously given for these choices are their symmetric
form encapsulating Newtons third law of motion, the action-
reaction law. By guaranteeing that particles give pairwise
identical but reversed forces one ensures linear momentum
conservation of the entire scheme. The key here is that par-
ticles are always pushing as soon as they have any pressure
regardless of whether there is a pressure gradient. The ones
with the highest pressure values are pushing the most. When
one has a large number of particles in a perfectly symmetric
configuration all the pushing will average out for an indi-
vidual particle. This is to some extent what happens in real
gases. The pressure itself is mediated by the collision of the
molecules the gas is made of.

From a physical point of view of a Lagrangian fluid
element, however, one should only be interested in the pres-
sure forces of neighbouring fluid elements exerted on oneself,
since the actual equation of motion is �v̇ = �P . This is the
main idea of rpSPH, a particle is accelerated only if a force
is acting upon it, i.e. Newtons first law of motion. rpSPH
derives its equation of motion directly from equation (2)
by subtracting the constant pressure of the particle under
consideration from the pressures of all the particles being
summed over. Since a gradient is computed, the subtraction
of a constant does not change the mathematical meaning of
the di⇥erence equation. However, as we will demonstrate it
dramatically a⇥ects the error properties of the entire scheme.
The resulting equation of motion reads

d.vi
dt

= �
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j=1

mj

⇧
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Pj � Pi

�2j
�iW̄

⌃
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where �iW̄ ⇧ [�iWij(hi) + �iWij(hj)]/2 is the averaged
kernel derivative as is customarily used also in the viscous
forces. One immediately notices that this formulation breaks
the symmetry between the pairwise forces of particles. Par-
ticles that have a pressure di⇥erence are both accelerated
into the same direction along the pressure gradient. Linear
momentum conservation hence will only be achieved if the

modeled pressure gradients are resolved. On the other hand
if one does not resolved the relevant pressure gradients one
cannot possibly get a correct solution to a hydrodynamic
problem in any case.

After all, it is important to recall that when construct-
ing conservative schemes one does not necessarily minimize
the numerical errors but rather ensures that one is making
symmetric errors so that the conserved quantity does not
change. Consequently, in rpSPH monitoring the total angu-
lar and linear momentum is an indicator of whether one may
have resolved the relevant length scales.

Many of the advantages of the entropic function based
SPH formalism Springel and Hernquist (2002) stem from
avoiding the P dV term that generally is discretized analo-
gous to equation (2). So in this formalism rpSPH is partic-
ularly trivial to implement. It involves setting the first term
on the right hand side of equation (2) to zero and change
the second by subtracting the pressure of the particle under
consideration. This literally is achieved by modifying one
line of code in Gadget-2 Springel (2005) as shown in the last
appendix. The resulting scheme saves two multiplies, one
division and one addition for one additional subtraction in
the main loop over neighbors. So there is no performance
penalty in using rpSPH as compared to standard SPH.

rpSPH is seemingly close to equation (3.1) of Monaghan
(1992). He dismissed his version for two reasons. The first
is that “an isolated pair of particles with di⇥erent pressures
would bootstrap themselves to infinity” and the second is
that it is di⇧cult to construct a consistent energy equation.
The latter is irrelevant in the formalism evolving an en-
tropic function developed by Springel and Hernquist (2002)
in which the PdV work does not enter. The first reason we
find unappealing since it is actually the correct solution. The
simulation having two particles estimates a pressure gradi-
ent. So over the model volume, i.e. the two particles and
their smoothing volumes there exists a monotonic pressure
gradient. Both particles hence should be accelerated along it.
Interestingly, Monaghan did not discuss the equivalent case
for the symmetric standard SPH. In this case both particles
push each other to infinity no matter what. If they have the
identical initial pressures their center of mass will not change
if they vary their center of mass moves exactly as in rpSPH.
In rpSPH they will move together while in SPH they will
accelerate each other apart to infinity. We have tested this
on a spherical blob of material in vacuum. We set the pres-
sure of the particles after the densities have been computed
from kernel smoothing. This way all particles have identical
initial pressure. The configuration is completely stable in
rpSPH yet blows itself apart in SPH in just a sound cross-
ing time. The reason why we do not choose equation (3.1)
of Monaghan (1992) is because we find it to be unstable
at least with the leapfrog time integrator in Gadget-2. The
closest to rpSPH discretization we could find in the litera-
ture is presented Morris et al. (1997), who chose to subtract
a background pressure. This still leaves an equation of mo-
tion in which the pressure of the particle under consideration
remains part of the hydro force estimate.

In the following we present a range of test problems
in two and three dimensions demonstrating rpSPH to be
superior to standard SPH in all cases.

c⇤ 2010 RAS, MNRAS 000, 1–14
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regardless of whether there is a pressure gradient. The ones
with the highest pressure values are pushing the most. When
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configuration all the pushing will average out for an indi-
vidual particle. This is to some extent what happens in real
gases. The pressure itself is mediated by the collision of the
molecules the gas is made of.

From a physical point of view of a Lagrangian fluid
element, however, one should only be interested in the pres-
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since the actual equation of motion is �v̇ = �P . This is the
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momentum conservation hence will only be achieved if the

modeled pressure gradients are resolved. On the other hand
if one does not resolved the relevant pressure gradients one
cannot possibly get a correct solution to a hydrodynamic
problem in any case.

After all, it is important to recall that when construct-
ing conservative schemes one does not necessarily minimize
the numerical errors but rather ensures that one is making
symmetric errors so that the conserved quantity does not
change. Consequently, in rpSPH monitoring the total angu-
lar and linear momentum is an indicator of whether one may
have resolved the relevant length scales.

Many of the advantages of the entropic function based
SPH formalism Springel and Hernquist (2002) stem from
avoiding the P dV term that generally is discretized analo-
gous to equation (2). So in this formalism rpSPH is partic-
ularly trivial to implement. It involves setting the first term
on the right hand side of equation (2) to zero and change
the second by subtracting the pressure of the particle under
consideration. This literally is achieved by modifying one
line of code in Gadget-2 Springel (2005) as shown in the last
appendix. The resulting scheme saves two multiplies, one
division and one addition for one additional subtraction in
the main loop over neighbors. So there is no performance
penalty in using rpSPH as compared to standard SPH.

rpSPH is seemingly close to equation (3.1) of Monaghan
(1992). He dismissed his version for two reasons. The first
is that “an isolated pair of particles with di⇥erent pressures
would bootstrap themselves to infinity” and the second is
that it is di⇧cult to construct a consistent energy equation.
The latter is irrelevant in the formalism evolving an en-
tropic function developed by Springel and Hernquist (2002)
in which the PdV work does not enter. The first reason we
find unappealing since it is actually the correct solution. The
simulation having two particles estimates a pressure gradi-
ent. So over the model volume, i.e. the two particles and
their smoothing volumes there exists a monotonic pressure
gradient. Both particles hence should be accelerated along it.
Interestingly, Monaghan did not discuss the equivalent case
for the symmetric standard SPH. In this case both particles
push each other to infinity no matter what. If they have the
identical initial pressures their center of mass will not change
if they vary their center of mass moves exactly as in rpSPH.
In rpSPH they will move together while in SPH they will
accelerate each other apart to infinity. We have tested this
on a spherical blob of material in vacuum. We set the pres-
sure of the particles after the densities have been computed
from kernel smoothing. This way all particles have identical
initial pressure. The configuration is completely stable in
rpSPH yet blows itself apart in SPH in just a sound cross-
ing time. The reason why we do not choose equation (3.1)
of Monaghan (1992) is because we find it to be unstable
at least with the leapfrog time integrator in Gadget-2. The
closest to rpSPH discretization we could find in the litera-
ture is presented Morris et al. (1997), who chose to subtract
a background pressure. This still leaves an equation of mo-
tion in which the pressure of the particle under consideration
remains part of the hydro force estimate.

In the following we present a range of test problems
in two and three dimensions demonstrating rpSPH to be
superior to standard SPH in all cases.

c⇤ 2010 RAS, MNRAS 000, 1–14

Do not use this fix



Similar problem (easy to set up!)

The ‘blob’ test:

968 O. Agertz et al.

each fluid element in GADGET-2 is defined through the specific en-
tropy and not the specific thermal energy. GADGET-2 uses a somewhat
different formulation of AV than GASOLINE. The viscosity term in
equation (14) is here formulated as

!i j = −
α

2

v
sig
i j wi j

ρi j

, (17)

where v
sig
i j = ci + cj − 3 wi j is the so-called signal velocity. Here

wi j = vi j · ri j/|ri j | is the relative velocity projected on to the separa-
tion vector provided particles approach each other. Like GASOLINE,

Figure 4. Gas density slices through the centre of the cloud at t = 0.25, 1.0, 1.75 and 2.5 τKH. From top to bottom we show GASOLINE (GAS 10M), GADGET-2
(GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART-HYDRO (ART 256). The grid simulations clearly show dynamical instabilities and complete fragmen-
tation after 2.5 τKH, unlike the SPH simulations in which most of the gas remains in a single cold dense blob.

GADGET uses a spline smoothing kernel (Monaghan 1992) and we
employ smoothing over the 32 nearest neighbours. In our test we
used the publicly available GADGET-2 version 2.01.

5 R E S U LT S O F T H E S I M U L AT I O N S

Fig. 4 shows central density slices of GASOLINE (GAS 10M),
GADGET-2 (GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART

(ART 256). These are the high-resolution simulations with the de-
fault standard settings.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 963–978

Agertz et al. (2007)
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• Dense sphere in pressure 
equilibrium with a low-density 
environment.

• Moves supersonically through 
the medium

• Grid code show that the blob 
is ripped apart.

• In SPH the blob survives for 
much longer.

• Conclusion: SPH is rubbish.



Saitoh & Makino (2012)
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Figure 5. Snapshots of a two-fluid system at t = 0.1, 0.3, 0.5, 1 and 8. The red and blue points indicate the positions of particles with
ρ = 4 and ρ = 1, respectively. The upper two rows are the results of the standard SPH, while the lower two rows are those of DISPH. The
first and third rows show the results of the equal-mass cases, whereas the second and fourth rows show those of the equal separation and
unequal mass cases.

Figure 6. The final state (t = 8) of a two fluid system with the
density contrast of 64. The red and blue points are the positions of
particles with ρ = 64 and 1, respectively. The particle separation
is constant and the particle mass difference is 1:64.

0 ≤ y < 1. We placed two fluids separated at y = 0.5.
The density just above (below) the interface was set to
ρh ≡ 2 (ρl ≡ 1). These two fluids were initially in the
hydrostatic equilibrium. Further, we assumed that each
fluid was initially isoentropic. The density distributions
of these fluids in the vertical direction are given by

ρ =











ρl
[

1 + γ−1
γ

ρlg(y−0.5)
P0

]
1

γ−1
y < 0.5,

ρh
[

1 + γ−1
γ

ρhg(y−0.5)
P0

]
1

γ−1
y ≥ 0.5,

(107)

where g = −0.5 is the gravitational constant, P0 = 10/7
is the value of pressure at the interface, and γ = 1.4. The
initial density and entropy profiles are shown in figure 9.
To ensure the initial density distribution given by Eq.
(107), we first placed equal-mass particles on the regular
grid with the separation of 1/512. Then, we adjusted the
vertical separation of each particle set having the same y
to reproduce the density distribution. The particle mass
was set to 5.7×10−6 and the total number of particles was
247296. The periodic boundary condition was imposed
on the x direction. Particles with y < 0.1 and y > 0.9
were fixed at the initial positions and they were not allow
to change their internal energy.
The velocity perturbation in the vertical direction was

added as the seed of the instabilities. We carried out
runs with two kinds of the seed. For the first test, we
added the velocity perturbation to particles in the range
of 0.3 < y < 0.7, and the form of the perturbation is

∆vy(x, y) = δvy[1 + cos(4πx)]{1 + cos[5π(y − 0.5)]}.
(108)

We set δvy = 0.025. For the second test, we added the



After a two line modification to 
the code...

The ‘blob’ test:

Fabio Governato



Conclusion

Many of the problems with SPH have actually been solved a long 
time ago....



Conclusion

Many of the problems with SPH have actually been solved a long 
time ago....

... that doesn’t mean that people have updated their code...


