The chemistry and thermodynamics of Pop III star formation

Where do the first stars form

• Form in dark matter minihalos with mass

 $M_{halo}\gtrsim 5~\times10^5~M_{\odot}$

- Redshift z = 16 20
- $T_{vir} \sim 1000 \text{ K}$
- Gas density is around

I cm⁻³

Stacy, Greif and Bromm (2010)

Current state-of-the-art?

- 2048³ DM particles
- I Mpc (co-moving)
- Particle mass ~ 9 M_{\odot}

Sasaki et al. (2013, in prep.)

The H₂ chemistry

• The ion-neutral reactions dominate in primordial gas

H + e⁻ → H⁻ + photon H⁻ + H → H₂ + e⁻ H⁺ + H → H₂⁺ + photon H₂⁺ + H → H₂ + H⁺

- As we pointed out in lecture 2, these reactions depend on the ionisation state of the gas.
- Electrons and protons act as catalysts in these reactions.

Why do they form in these minihalos?

- Collapse occurs in minihalos with $t_{cool} < t_H$
- Below 7000 K, H₂ is the only useful coolant
- Collapse only occurs in minihalos that can form enough H_2 to permit them to cool
- Amount of H_2 produced is a strong function of temperature.
- Once T_{vir} reaches ~1000 K, enough H_2 can form to satisfy the above cooling time requirement.

What sets the H₂ fraction?

- Rate of ion-neutral reactions depend on the ionisation fraction in the gas.
- Ionisation fraction is reduced by recombination.
- H₂ formation is a race against the recombination!
- Limits the amount of H_2 that a halo can form by this process to around $n_{H2} \sim 10^{-3} \ n$
- Sets a limit to the cooling available in the halos as they collapse.

So what happens next?

- The evolution of the temperature during the collapse is not well understood.
- Characterised by several key stages.
- Different H₂ physics (formation/ heating/cooling) controls each stage.

Yoshida et al. (2006)

Cooling rate is faster than the heating rate (to do gravitational contraction). Density increases and T drops.

 $n [cm^{-3}]$

H₂ formation rate drops to around zero -- ionisation of gas is too low.

10000 E F G Α ΓK D 1000 В H2 reaches its critical density, and levels go into 100 LTE 10⁰ **10**¹⁰ **10**¹⁵ 10⁵ n [cm⁻³] Cooling goes as n, rather than n² 10⁰ molecular fraction **10**⁻¹ 10⁻² 10⁻³ **10**⁻⁴ 10⁻⁵

10⁰

10¹⁵

10¹⁰

10⁵

n [cm⁻³]

Compressional heating from gravitational collapse

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{kT}{\mu m_{\mathrm{p}}} \left[\frac{32\mathrm{G}}{3\pi}\right]^{1/2} \rho^{3/2} - \Lambda_{V} + \Gamma_{V}$$

Gas has to heat up as it collapses

10000 E F GI Α Γ [X D 1000 В Rapid rise in the H2 fraction due to 3-body reactions. 100 Results in cooling once H₂ 10⁰ 10⁵ **10**¹⁰ **10**¹⁵ $n [cm^{-3}]$ fraction is high 10⁰ molecular fraction **10**⁻¹ 10⁻² 10⁻³ **10**⁻⁴ 10⁻⁵ **10**¹⁰ **10**¹⁵ 10⁰ 10⁵

 $n [cm^{-3}]$

The 3-body formation regime

• Two path ways:

 $H + H + H \rightarrow H_2 + H$ $H_2 + H + H \rightarrow H_2 + H_2$

• Consider the first. Using the rate from Glover (2008):

$$\frac{\mathrm{d}n_{\mathrm{H}_2}}{\mathrm{d}t} = k_{3\mathrm{b}} n_{\mathrm{H}}^3 \qquad k_{3\mathrm{b}} = 7.7 \times 10^{-31} T^{-0.464} \mathrm{~cm}^6 \mathrm{~s}^{-1}$$

$$\Gamma_{3b} = 4.4 \,\mathrm{eV} \,\frac{\mathrm{d}n_{\mathrm{H}_2}}{\mathrm{d}t} \qquad t_{\mathrm{H}_2} \sim \frac{n_{\mathrm{H}_2}}{k_{3b} n_{\mathrm{H}}^3}$$

Different path to Pop III?

HD cooling:

• Formed and destroyed via the reactions,

 $H_2 + D^+ \to HD + H^+$ (exothermic) $HD + H^+ \to H_2 + D^+$ (endothermic)

- Below 462K, reaction 1 is favoured over reaction 2.
- Results in chemical fractionation

$$\frac{x_{\rm HD}}{x_{\rm H_2}} > \frac{x_{\rm D}}{x_{\rm H}} \qquad (x_{\rm D} = 2.6 \times 10^{-5})$$

Different path to Pop III?

HD cooling:

• HD can cool the gas down to the CMB temperature,

$$T_{\rm CMB} = 2.728 \, {\rm K} \, (1+z)$$

Different path to Pop III?

How to excite the HD cooling channel?

- Recall that the H2 fraction depends on the ionisation fraction in the minihalo.
- Halos with higher ionisation fractions can form more H2, and cool to slightly lower temperatures.
- Can then produce the HD fractionation, and the HD cooling.
- Can be triggered by nearby star formation or via collisional ionisation is slightly more massive halos.

What happens next?

What happens at high densities?

- Disc builds up which fragments to form a small N system
- Central protostar mass ~ 0.5 M_☉
- Fragmentation timescale ~ 100 yr

Complimentary study

Always good to use a different code!

- Greif et al. 2011 used AREPO
- Had higher resolution throughout collapse.
- Better able to resolve the turbulence in the infalling gas.
- Same basic picture, but much more messy.

Greif et al. (2011) + Smith et al. (2011)

Clark et al. (2011b)

Problems with convergence?

• Should we form a large, gravitationally unstable disc?

Turk et al. (2012)

Problems with convergence

• Need to be careful of how the chemistry/cooling is solved!

Bovino et al. (2013)

Clearly H₂ line-cooling is important

Tilman Hartwig's Masters Thesis:

- Working to improve H2 line cooling using TREECOL.
- Finds that we have been significantly underestimating the amount of cooling that occurs in the 'optically thick' regime.
- TREECOL allows us to better estimate the effective optical depth of the line.

What about CIE cooling?

• Shingo Hirano has shown the how you treat the CIE cooling can affect the cooling and dynamics.

Hirano et al. (2013)