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Outline for Lecture 3:!

Additional Physics in grid codes.!
•  Optically-thin cooling !
•  Microscopic diffusion (viscosity, resistivity, conduction)!
•  Gravity!
•  Special relativity!
•  Dust particles!

Adding more physics.!
Adding more physics can require just small changes, or a complete 
re-write of the algorithm, depending on the physics.!
!
Simple changes: !

Adding local source terms (e.g. cooling).!
Moderate changes: !

Adding flux-divergence terms (e.g. viscosity, resistivity)!
Adding terms requiring elliptic solves (e.g. self-gravity)!

Complete re-write:!
Adding new dynamical equations (e.g. special relativity, 
particles, radiation)!



Adding simple source terms.!

Simple source terms usually added via operator splitting.!
1.  Update flux divergence terms ignoring source terms!
2.  Update source term.!

 !
For Godunov methods, simple operator splitting:!

1.  formally makes scheme first-order in time!
2.  can lead to stability problems!

!
Second-order can be achieved using multi-step methods (easy 

using van Leer unsplit integrator, or RK time stepping).!
!
Stability issues can be addressed using implicit methods!

Simple source term: Optically-thin cooling!
Adds source terms to energy equation:!

Where Λ(T) is per-particle cooling rate, H is per particle heating rate.!

Depending on cooling function, terms are usually nonlinear in T, and very stiff.  
Forward Euler differencing requires very small Δt!

Better to use Crank-Nicholson (semi-implicit) differencing, where source terms 
are calculated at both current and advanced time (using En and En+1).!

Not difficult to add cooling directly to integrator in Godunov methods by adding 
cooling term to calculation of L/R-states, and every partial update.!

Warning: easy to add cooling, but makes physics of MHD much more complex.  
For example, need to add thermal conduction to be able to resolve Field length to 
get correct dynamics with cooling instability.!

Moral:  It takes work to really understand what is going on in both the physics 
and numerics.!

Example: thermal instability.  Adding heat 
conduction is crucial.!

Points: numerically measured growth rate for exact eigenmode!

No conduction!

With conduction!

Without conduction:!
•  do not get growth rate correct; !
•  too much small scale structure!

Nonlinear saturation at 200 Myr!

Example: overcooling at interfaces!
Growth of spherical D-type ionization front in uniform medium.!
Plot subsample of points at some late time:!

643           1283         2563!

•  Inevitably there are some points that 
lie between hot diffuse and cold dense 
phases.  !

•  Cooling rates in these cells 
overestimated: must be limited. !

•  Alternative: need front tracking 
methods!

Krumholz, Stone, & Gardiner 2007!



Momentum equation:!

Energy equation:!
!
Both cases can be differenced using FTCS:!
!
But stability constraint on FTCS for parabolic equations is very 
restrictive!
Solution: (1) sub-stepping: take many steps at ΔtD for every MHD Δt.!
                (2) super-timestepping; size of sub-time steps varied.!
                (3) implicit differencing:!
!
Latter leads to large sparse-banded matrices in 2D and 3D, which must 
be solved using, e.g. multigrid.!

Viscosity and thermal conduction! Anisotropic conduction and viscosity!

Anisotropic heat flux (χ = conductivity)!
Anisotropic viscous 
stress tensor.!
“Braginskii viscosity”!

In a magnetized, weakly collisional plasma the thermal 
conduction and viscous transport will be mainly along field 
lines.  Produces qualitative change in the dynamics 
(magneto-thermal instability, heat-flux buoyancy instability, 
magneto-viscous instability).  !
!
Study through the inclusion of anisotropic viscous and heat 
fluxes.!

Difference using FTCS with monotonic transverse temperature or velocity gradients 
(Parrish & Stone 2005; Sharma & Hammett 2007)!
Can represent 1:1000 anisotropies in flux with any orientation of B on grid.!

New dynamics in kinetic MHD: magneto-thermal instability!

T∇

Increasing 
temperature!

hot!

cold!

With anisotropic conduction, atmospheres with temperature decreasing 
upward are convectively unstable, regardless of entropy profile!

Colors = Temperature!
Lines = B-field!

With Braginskii 
viscosity!

No Braginskii 
viscosity!

Kunz et al. 2012!

Balbus 2000; Parrish & Stone 2005; 2007 !
Problems with Braginskii!

Large pressure anisotropies in the plasma drive instabilities at microscopic 
(close to Larmor radius) scale.!
!
When Pperp  << Ppara:  firehose instability!
           Pperp  >> Ppara:  mirror instability!
!
But Braginskii gets the wrong growth rates for both.  Moreover, fastest growth 
rate is near Larmor radius, which MHD simulations can never resolve.!

•  Saturation of firehose and mirror at small scales can 
strongly affect MHD on large scales by tangling field and 
limiting P anisotropy!

•  Need sub-grid model for firehose and mirror at large β%



Ohmic resistivity!
Induction equation becomes:!

!J = current density!

Over-riding concern is to keep div(B)=0.  This suggests a CT 
differencing is required, using an �effective� EMF   E=ηJ located at 
cell corners!
!
!
!

Once again, time step constraint very restrictive:!

Can use (1) sub-stepping, or (2) super-timestepping.   Implicit CT 
differencing is complex.!

Can be extended to ambipolar-diffusion and Hall regimes by 
appropriate definition of AD or Hall EMF.  !

MRI with ambipolar diffusion!
Generalized 
Ohm�s Law: 

Implement both AD and Ohmic diffusion EMFs using CT.!

Test: decay rate of linear waves.!

 dashed=analytic soln.!
 solid= numerical soln.!

Ohmic      Hall                AD!

Gravity!
With gravity, momentum and energy equations can be written as:!
!
!

Where g=gravitational accn,                                                 gravitational stress tensor!

For fixed gravitational potential (e.g. central star)!
•  Linear momentum is not conserved!
•  Total energy is conserved!

So add source term to momentum equations using analytic form for acceleration, and 
add source term to total energy using mass fluxes and potential difference - 
conserves total energy exactly!
!
For self gravity!
Add source terms to momentum as divergence of gravitational stress tensor - 
conserves total momentum exactly.  Add source terms to total energy using mass 
fluxes and potential difference.!
!
Of course, must also solve Poisson�s equation for the potential: use time average of 
Φn and Φn+1 to ensure second order accuracy without solving PE twice per timestep.!

Self-gravity: conserving momentum!
Crucial to compute gravitational acceleration as a divergence of 
a flux rather than a source term in order to conserve momentum.!

Simple test: advection of self-gravitating hydrostatic sphere.!
With source term: sphere comes to rest on mesh!
With flux-divergence: sphere propagates at constant momentum!



Self-gravity: conserving momentum!
Another good test: gravitational instability of linear planar sound wave!

With flux-divergence: total momentum conserved exactly.!

Self-gravity: conserving energy!
With appropriate definition of the energy flux, energy equation can be 
cast in strictly conservative form (no source terms) with self-gravity.  
One possible form:! Fg =
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Test, oscillations of γ=1.36, n=3 polytrope!

Non-conservative 
algorithm!

Conservative 
algorithm!

Jiang et al. 2013!

Special relativity!
Such a substantial change to algorithm that it can be considered as writing a new 
solver rather than extending existing solver.  !
!
SR MHD equations can also be written in conservative form!
!
But definition of conserved variables (and their fluxes) is more complicated:!
!

(enthalpy)!

So overall integration algorithm remains the same!
1.  Reconstruction step!
2.  Compute fluxes with Riemann solver!
3.  van Leer unsplit integrator!

!
But significant changes required in each step:!

1.  Conversion from conserved to primitive variables requires 
nonlinear root finding, we use method of Noble et al. (2006)!

2.  Relativistic Riemann solver required (HLL, HLLC, HLLD)!
3.  Use van Leer unsplit integrator since no characteristic 

decomposition needed in reconstruction step.!



Relativistic MHD shock test!

Line=1D!
Pts=3D!

Γ=2 Brio-Wu shocktube%

Relativistic KH (γ=2.29)!
HLLE! HLLC! HLLD!

HLLE: does not capture secondary rolls even at 2x resolution!

Relativistic MHD jet!
Density ratio = 10-2, γ=7, toroidal magnetic field ! Summary!

•  Adding extra physics requires care to ensure 
algorithms are stable and accurate, and any 
new length- or time-scales are resolved!

•  Radiation hydrodynamics: so complicated 
requires all of next lecture.!


