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All about Athena!
(Five lectures)!

Jim Stone!
Department of Astrophysical Sciences!

Princeton University!

Athena: what is it?!

•  Best to start with the Trac project page 
https://trac.princeton.edu/Athena!
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Outline of lectures!

Lecture 1.  Introduction to basic algorithm!

Lecture 2.  Grids in grid codes!

Lecture 3.  Extra physics!

Lecture 4.  Radiation hydrodynamics!

Lecture 5.  Example applications; future developments!
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Outline of Lecture 1: !

1.  The Godunov algorithm!
•  Discretization!
•  Riemann solvers !
•  Reconstruction!
•  Unsplit Integrators!

2.  Implementation issues: the Athena code!
3.  Tests!
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Athena solve the equations of ideal MHD in conservative form 

CΔ"

The first three equations are differenced using a finite-volume 
form.  The third equation requires something special: finite-area 
form!
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Basic Algorithm: Discretization!

Bx!

By!

ρ
E
V"

Scalars and velocity at cell centers!
!
Magnetic field at cell faces!

Cell-centered quantities volume-averaged!
Face centered quantities area-averaged!

Area averaging is the natural discretization for the magnetic field.!

Finite Volume Discretization!
Conservations laws for mass, momentum and energy can all be 
written as !

Integrate over the volume of a grid cell, and over a timestep dt, 
apply the divergence theorem to give!

(This equation is exact -- no approximations have been made!)!
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Where, in the previous equations:!

 are �volume averaged�  values, while!

 are �time- and area-averaged� fluxes.!
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Finite-Area discretization of the induction equation.!
Integrate the induction equation over each cell face, apply Stokes Law!

Again, these equations are exact -- no approximation has been made.!
Moreover, this discretization keeps div(B)=0 to machine precision.! 10!

Where, in the induction equation,!

 are �area averaged� components of the magnetic field, and!

 are �time- and line-averaged��electric field (v x B).!
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Uses cell-centered mass, momentum, energy; face-centered field:  

Summary of the discretization.!

Uses face-centered fluxes, and edge-centered EMFs.!

The key is how to compute these fluxes and EMFs all at once!!
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Godunov�s orginal (first-order) method!
•  Difference in cell-averaged values at each grid interface define set of Riemann 
problems (evolution of initially discontinuous states).!
•  Solution of Riemann problems averaged over cell give time-evolution of cell-
averaged values, until waves from one interface crosses the grid and interacts with 
the other, that is for !
•  Due to conservation, don�t actually need to solve Riemann problem exactly.  Just 
need to compute state at location of interface to compute fluxes.!

Flux given by solution along x=0!

Then, solution evolved according to!



13!

For pure hydrodynamics of ideal gases, exact/efficient nonlinear 
Riemann solvers are possible. 
 
In MHD, nonlinear Riemann solvers are complex because: 

1.  There are 3 wave families in MHD – 7 characteristics 
2.  In some circumstances, 2 of the 3 waves can be degenerate 

(e.g. VAlfven = Vslow ) 

Equations of MHD are not strictly hyperbolic 
 (Brio & Wu, Zachary & Colella) 

Thus, in practice, MHD Godunov schemes use approximate and/or 
linearized Riemann solvers. 

Riemann solvers!
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Many different approximations are possible: 
 
1.   Roe�s method – keeps all 7 characteristics, but treats each as a 

simple wave. 

2.   Harten-Lax-van Leer-Einfeldt (HLLE) method – keeps only 
largest and smallest characteristics, averages intermediate states 
in-between. 

3.   HLLC(HLLD) methods – Adds entropy (and Alfven) wave 
back into HLLE method, giving two (four) intermediate states. 

Good resolution of all waves 
Requires characteristic decomposition in conserved variables 
Expensive and difficult to add new physics 
Fails for strong rarefactions 

Very simple and efficient 
Guarantees positivity in 1D 
Very diffusive for contact discontinuities 

Reasonably simple and efficient 
Guarantees positivity in 1D 
Better resolution of contact discontinuities 
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Exact solution        Roe�s approximate solution           HLLE solution 

Effect of various approximations on the solution to the Riemann 
problem in hydrodynamics 

So which approximation is �best�?  Must explore the use of each. 
 
Use of a Riemann solvers is a benefit, not a weakness, of a Godunov 
method: makes shock capturing more accurate. 

Higher-order reconstruction!
•  Using cell-centered values for left- and right-states to define Riemann problems at 
cell interfaces is first-order and very diffusive.!
•  Higher-order methods use piecewise linear (MUSCL) or piecewise-parabolic 
(PPM) reconstruction within cells.!
•  Difference between L/R states is small for smooth flow, large near shocks.  
Riemann solver automatically gives correct dissipation for shocks.  No artificial 
viscosity is needed.!

Piecewise linear reconstruction.!
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van Leer unsplit integrator.!
•  For multidimensional hydrodynamics, directional splitting can be used.!
•  For MHD, unsplit integrators are necessary if the conservative form is adopted.!
•  Simplest integrator: modified MUSCL-Hancock (�van Leer�) method due to 
Falle (1991).!

Steps in algorithm!
1.  Compute first-order fluxes at every interface!
2.  Use these fluxes to advance solution for Δt/2 (predict step)!
3.  Compute L/R states using time-advanced state, and compute fluxes!
4.  Advance solution over full time step (correct step) using new fluxes!

Since this is a multi-step method, time-advance of L/R states (characteristic tracing) 
is NOT needed in reconstruction step.!
This greatly simplifies algorithm, and makes it much easier to extend to multi-
physics, since characteristic decomposition of linearized equations not needed.!

Stone & Gardiner, NewA, 2009!
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Corner transport upwind (CTU) integrator!
A more accurate unsplit integrator is due to Colella (1990), 
extended to MHD by Gardiner & Stone (2005; 2008)!

Steps in algorithm:!
1.  Compute L/R states including time advance using characteristic tracing and 

source terms for multi-dimensional MHD!
2.  Compute fluxes from Riemann solver!
3.  Correct L/R states with transverse flux gradients for Δt/2 including source 

terms for MHD, e.g. in 2D x-face states corrected via:
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !!

4.  Compute multi-dimensional fluxes from corrected L/R states!
5.  Advance solution full time step using multi-dimensional fluxes!

see Stone et al, APJS, 2008!
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Constrained Transport in 2D!
•  Finite Volume / Godunov 

algorithm gives E-field at 
face centers.!

•  �CT Algorithm� needs  
E-field at grid cell 
corners.!

•  Arithmetic averaging: 2D 
plane-parallel flow does 
not reduce to equivalent 
1D problem!

•  Algorithms which 
reconstruct E-field at 
corner are superior 
Gardiner & Stone 2005!

E z,i 1 2,j 1

E z,i 1 2,j

E z,i , j 1 2 E z,i 1, j 1 2

E z,i 1 2,j 1 2
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Advection of a field loop (2N x N grid) 
Field Loop Advection (β = 106): MUSCL - Hancock integrator 

Movies of B2  

    Arithmetic average   Gardiner & Stone 2005 
(Balsara & Spicer 1999) 

Good test of stability of CT algorithm (obviously trivial for vector 
potential approaches) 

Good test of whether codes preserves div(B) on appropriate stencil: 
Run in 3D with non-zero Vz. Does method keep Bz zero? 



Replace eigenvalues (wave speeds) in Roe�s linearization with!
where!
!
Test with Noh shocktube (M=106 converging flow)!

Carbuncle instability!
Small perturbations in upstream flow produce large perturbations in postshock gas.!

For grid aligned shocks, transverse dissipation is too small to damp perturbations.  
Transverse pressure gradient produces flow which amplifies perturbations in shocks: 
carbuncle instability!

Solution, increase dissipation in transverse direction for grid-aligned shocks, e.g. 
using H-correction in Roe solver:!

Quirk 1994, Sutherland et al 2003!

Carbuncle in regions where 
shock aligned with grid!

With H-correction, 
carbuncle is fixed.!

Density at t=2 in Noh shock test!

x! x!

x!
x!

x!
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Boundary conditions!
As in ZEUS, BCs are applied by specifying solution in �ghost zones�!

Several default choices for BCs provided, e.g.!
1.  Reflecting!
2.  Inflow!
3.  Outflow!
4.  Periodic !

•  Unsplit integrator with PPM requires 4 rows of ghost zones.!
•  BCs applied only once per time step -- more efficient parallelization.!
•  New user-defined BCs easily added through use of function pointers.!

Athena: one implementation of a MHD Godunov scheme.!
•  Two versions: C (most capable) and F90 (cleanest) ! ! !

! ! ! ! ! ! ! !
!!

•  Modularity: makes extensions to code easier!
•  Riemann solvers, reconstruction algorithms, unsplit integrators all 
separate functions with common interface.!

•  Ease-of-use:!
•  configure in C, modules in F90!
•  flexible variety of output files (that don�t depend on external libraries!)!
•  Input files have intuitive format enabled by special-purpose parser.!

•  Portability ensured by:!
•  Strict adherence to ANSI standards (don�t use language extensions!)!
•  No reliance on external libraries (except when absolutely necessary, e.g. 
parallelization with MPI)!

•  Performance: unsplit integrators require large number (~100) of 3D scratch 
arrays, however method is so expensive (~104 flops per cell) the overall method 
is cpu, not memory, bound.  Requires 10µsec per cell update for 3D MHD.!

http://www.astro.princeton.edu/~jstone/athena.html  for C version!
http://www.astro.virginia.edu/VITA/athena.php  for F90 version!

Configure provides a very useful way to control physics and algorithm options 
before compiling.  Usage:  configure [--with-package=choice] [--enable-feature]!

The -c command-line option 
enables output of configuration 
details from executable:!
!
!
!
!
Lot’s of options!!!
See documentation for 
description of each.!



Parallelization!
1.  Parallelization with MPI via domain decomposition.!

•   Any arbitrary decomposition in X, Y, or Z possible (blocks are best for large Np)!
•   Can compute optimum decomposition to minimize data communicated automatically 

for given Np!
•   No diagonal communication required if data swapped sequentially in each direction.!
•   Ideal MPI blocksize seems to be 643 on current processors.!

2.  Balancing workload is easy since flops/zone fixed.!
3.  Can overlap work and communication by updating outer zones in 

MPI block first.!
4.  Tried OpenMP on multi-core, and find it does not perform any 

better then pure MPI (but saves some memory).!
5.  FFTs parallelized using block (not just slab) decomposition using 

Steve Plimpton�s interface to FFTW.!

26!

Domain decomposition on multi-core 
processors to ensure locality!

Best to map blocks of MPI domains to cores on processors, 
rather than using linear ordering along dimensions.!
Equivalent to using Peano-Hilbert ordering for space-filling curve.!

Weak scaling of Athena is very good, since it is all just explicit 
MHD (nearest-neighbor communications). ! Bug tracking.!

Athena uses Trac+SVN to manage software development!
!
See https://trac.princeton.edu/Athena!
!
Site contains documentation, milestones, bug tickets, and 
ability to browse SVN repository.!
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For MHD, must focus on multidimensional tests. 
 
Convergence rate and ability to capture shocks are 

equally important. 
 

     Five test problems we have found very useful (all drawn 
from basic physics of fluids studied in Lecture 1): 

1.  Linear wave convergence 
2.  Nonlinear circularly polarized Alfven waves 
3.  Brio & Wu, and Ryu-Jones shocktubes 
4.  Field loop advection 
5.  MHD instabilities (KH, RT, MRI, etc.) 

Some Tests 

See http://www.astro.princeton.edu/~jstone/athena.html! 30!

Linear Wave Convergence: 3D (2N x N x N) grid 

Initialize pure eigenmode for each wave family!
Measure RMS error in U after propagating one wavelength 

quantitative test of accuracy of scheme!
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RJ2a Riemann problem rotated to grid!

Initial discontinuity inclined to grid at tan-1 θ = 1/2 
Magnetic field initialized from vector potential to ensure div(B)=0 

 Δx = Δy,  512 x 256 grid 

Final result plotted 
along horizontal line 
at center of grid 

Lx = 2 

Ly = 1 

UR 

UL 

Problem is Fig. 2a 
from Ryu & Jones 
1995 
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RJ2a shocktube in 3D (2N x N x N grid)!
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HLLD solver, all 7 MHD waves captured well.!
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Hydrodynamical Implosion!
From Liska & Wendroff; 400 x 400 grid, !

P = 1!
ρ = 1!

P = 0.125!
ρ = 0.14!

Additional benefit of 
using unsplit 
integration scheme: 
Code maintains 
symmetry!
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RM instability in Spherical Blast Waves!
Impulsive acceleration of a dense fluid by a less-dense fluid (e.g. by a 
shock propagating across a CD) is subject to RT-like instability.  
Algebraic rather than exponential growth.!

P = 0.1!
ρ = 1!

LX = 1!

LY = 1.5!

P = 100 in r < 0.1!

B at 45 degrees, !
β = 0.1!

HYDRO                           MHD!

P = 0.1!
ρ = 1!

Δx = Δy, 400 x 600 grid, periodic boundary conditions!
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Hydrodynamic Blast Wave!
400 x 600 grid!

MHD Blast Wave!
400 x 600 grid!

Compare to Fig. 23 in Springel (2009)!

Summary!
•  Godunov methods for MHD are now mature.!

•  They are an excellent choice for problems involving shocks.!

•  With CT, divergence-free condition can be enforced to 
machine precision using Godunov methods.!

•  Such methods can scale extremely well to 105-6 cores, even 
with mesh refinement.!

•  The future: Athena++!
•  10x faster per core (1 µsec per cell for 3D MHD)!
•  mixed (OpenMP/MPI) parallelization model for Intel Xeon Phi!
•  full GR, including time-dependent metrics!
•  relativistic radiation transport!
•  AMR!


