Observations of Protoplanetary Disks:
DUST

Meredith Hughes
Wesleyan University




Disclaimer: | have a serious bia 2
WS radio observations




Dust vs. Gas
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Protoplanetary Disks:
99% of the mass is in gas
Opacity dominated by dust
Gas dominates dynamics
Gas-dust interactions depend on grain size



Circumstellar Disk Structure

Adapted from Dullemond et al. (2007)
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BIG QUESTIONS

about dust

Where is the mass, and how much?
How quickly do the grains grow?
When/why does the dust disappear?
What creates structure in dust?

What can dust tell us about planets?
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1. Where is the mass? How much?

mm/radio measurements necessary because disk needs to be optically thin

10¢

10¢

10F

QOrion

~r

)

v

i

Tauru

S—Aurizgfo

P Ophiucr’tus'I
ITIH
0.001 _ 0.010  0.100

Mg [Mo]

1.0

10.1

Completeness

Environment matters!

No massive disks in the center of the ONC (although
there are on the outskirts)

Low-mass star-forming regions show broad distribution
of disk masses, including both high- and low-mass tails.
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HUGE CAVEAT: Biggest uncertainty is mass opacity, K,.
Probably factor of ~4 wiggle room (pollack et al. 1994;
Ossenkopf & Henning 1994). An arbitrary amount of mass
could be locked up in boulder-size objects.

Mann et al. (2009)



1. Where is the mass? How much?

mm/radio measurements necessary because disk needs to be optically thin
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1. Where is the mass? How much?

mm/radio measurements necessary because disk needs to be optically thin
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Hey, theorists! Pay attention!

MMSN has y=2, but the real
disks we observe have y=1!
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L (gas+dust) [g em™]

1. Where is the mass? How much?

mm/radio measurements necessary because disk needs to be optically thin

[ Using standard assumptions, most disks have roughly as much material as MMSN }
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Andrews et al. (2010)



2. How quickly do the grains grow?

Ideally, we would like to know size distribution as a function of position.

First order: Long-wavelength SED slope
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2. How quickly do the grains grow?

Ideally, we would like to know size distribution as a function of position.
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Second order: Radially resolved K,
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2. How quickly do the grains grow?

Ideally, we would like to know size distribution as a function of position.

Another dimension: edge-on disks

The Butterfly Star ‘ ]
1.3mm | .

Grain growth to 100um, vertical settling, and radial segregation
Grafe et al. (2012)



3. When/why does the dust disappear?

Dissipation timescales and resolved imaging
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3. When/why does the dust disappear?

Dissipation timescales and resolved imaging

L MWC 758

1 SAO

{ Transition disks look

like protoplanetary
disks with their
middles cut out.

Some have centers
depleted of small
grains, and others
don’t (noticeably).

Don’t believe size
estimates based on
SED alone

Probably not
photoevaporation

Andrews et al. (2011)



3. When/why does the dust disappear?

Dissipation timescales and resolved imaging
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3. When/why does the dust disappear?

Dissipation timescales and resolved imaging

LkCa 15 disk

T Cha also has candidate exoplanet
Huelamo et al. (2011)
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3. When/why does the dust disappear?

Dissipation timescales and resolved imaging
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More results from SEEDS...
Minor Axis NE

Major Axis SE

Hashimoto et al. (2012)
Gap discovery in PDS70

Muto et al. (2012)

Mayama et al. (2012) No gap, despite mm obs
J1604-2130 — asymmetry in polarized light
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4. \What creates structure in the dust?

Spiral arms, eccentricity, and vortices
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HD 135344B

* Two spiral arms clearly indicated, extending
inside gap observed at mm wavelengths

e (Cause isinconclusive; planets are plausible

e Can watch evolution of spirals over 10-20 yrs



4. \What creates structure in the dust?

Spiral arms, eccentricity, and vortices

Casassus et al. (2013)

HD 142527

* Clumpy scattered light

* Millimeter horseshoe

e Contrast too extreme for eccentricity alone
* (More on the gas tomorrow)




4. \What creates structure in the dust?

Spiral arms, eccentricity, and vortices
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4. \What creates structure in the dust?

Spiral arms, eccentricity, and vortices

van der Marel et al. (2013)
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 CO(6-5) and 18.7 um VISIR emission
unremarkable

Asymmetry in the mm grains

e Far more pronounced and significant than
any other source observed so far
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BIG QUESTIONS

about dust

Where is the mass, and how much?
How quickly do the grains grow?
When/why does the dust disappear?
What creates structure in dust?

What can dust tell us about planets?



