Chemically reactive flows in SPH: a basic overview

Paul Clark Zentrum für Astronomie (ZAH) der Universität Heidelberg Institut für Theoretische Astrophysik

Summary of the week

Today

Introduction to Seren (the SPH for this week) and basic ideas behind doing chemistry in fluid codes.

Tuesday

How to create a simple model of the ISM with H_2/H^+ chemistry and basic ISM heating and cooling

Wednesday

Ways to improve on the simple model: CO, better treatment of shielding, radiative transfer, treating optically-thick line-cooling.

Thursday

Overview of Pop III : overview of the main chemical processes, how it can go wrong(!), improving optically-thick line-cooling

Friday

SPH add-ons and improvements: sink particles, diffusion, new fixes.

Seren: an SPH code

- Written by David Hubber, and SPH expert (means "star" in Welsh!)
- It's a new code (unlike the organic growths that most groups use), written in clear F90
- Has a flexible SPH implementation under the hood
- It is maintained, and can be accessed via GIT
- Has support for MPI/OpenMP
- It has several excellent code papers attached to it:

Hubber et al. 2011, A&A, 529, 27 Hubber et al. 2013, MNRAS, 430, 1599 Hubber et al. 2013, MNRAS, 430, 3261 Hubber et al. 2013, MNRAS, 432, 711

Inside Seren

- Several time-integration methods
- Individual particle timesteps (+ limiters)
- Different flavours of SPH:
 - different implementations (original/'grad-H'/entropy formalism)
 - several different smoothing kernels
 - various forms of viscosity
- Hybrid N-body + gas (4th order Hermite for N-body)
- Improved sink particle implementation
- Several modifications to SPH
- Approximations for radiative transfer:
 - Dust continuum RT approx (Stamatellos/Forgan)
 - Photoionisation (Bisbas)

Code comparison paper

 Compares SPH to AMR for a series of standard testproblems

MG (Van Loo et al. 2006)

Hubber et al. (2013)

Improved sink particle algorithm

• "Boss-Bodenheimer test" (1979):

Hubber, Walch & Whitworth (2013)

Nbody-paper

• Colliding plummer spheres with gas

Seren Science...

• Dispersal of molecular clouds via photoionisation

Walch et al. (2012)

Seren Science...

• Fragmentation of protostellar discs

Stamatellos et al. (2012)

Obtaining the code

• Can be obtained via "git" at:

https://github.com/dhubber/seren

GitHub 🖿	s repository * Search or type a command	③ Explore Feat	ures Enterprise Blog	Sign up Sign in
dhubber / se	eren			★ Star 0 ÿ Fork 0
SEREN SPH code	(Hubber et al. 2011) for astrophysica	al hydrodynamics simulatio	ns	
③ 10 commits	s (2 4 branches	📎 0 releases	🕀 1 contributor	<> Code
t) 🎾 branch: mas	ster - seren / •			O Issues O I'l Pull Requests O
Merge branch 'master	of https://github.com/dhubber/seren			+ Pulse
David Hubber auth	ored 11 days ago		lotest commit 53c8908a09 🔂	
datafiles	Initial commit to github repository		20 days ago	draphs
ill docs	Removed more unneeded files		11 days ago	P Network
i scripts	Added bash script tests		11 days ago	
in src	Removed more unneeded files		11 days ago	HTTPS clone URL
	1 Cleaned up much of the original code	0	12 days ago	You can clone with HTTPS.
Makefile	Removed more unneeded files		11 days ago	Subversion, and other methods.
README.md	Update README.md		19 days ago	Clone in Desktop
joinsims	Initial commit to github repository		20 days ago	Ownload ZIP
makefiletail.mk	Removed more unneeded files		11 days ago	
🗎 params.dat	1 Removed unused/half-developed fea	tures from the master branch (e.	12 days ago	

• This talk will be posted online (pdf)

http://www.ita.uni-heidelberg.de/~pcc/hipacc

IO & ICs

- Seren has several formats for the IC files and snapshots.
- Easiest is simply to use the formatted ascii column format (called 'ascii' in the code).
- Can be read in simply with gnuplot / IDL etc.
- I've also uploaded an IC generator to hyades /home/pcc/setpartseren
- A turbulent velocity cubes (128³) can be found in: /home/pcc/turb_grid_128_cube_nat

Goal of the week

- To include simple CO chemistry in Seren
- Try a few different simulations (turbulent cloud, colliding flows)
- Improve on the code!
 - Better treatment of shielding (Gnedin/Clark/other...)
 - Optimise the chemistry (much of it could be tabulated)
 - Live dust temperatures?
- Alternatively:
- Continue your own SPH projects from last week
- Start something new using the features in Seren

Simulating chemically reactive flows in astrophysics

Based on a talk given by Simon Glover (ZAH/ITA, Heidelberg) IMPRS Summer School 2012

Why study chemically reactive flows?

Stacy, Greif and Bromm (2010)

Yoshida et al. (2006)

Why study chemically reactive flows?

Glover & Clark (2012a)

Glover & Clark (2012b)

Governing equations

 The number density n_i of a chemical species i evolves according to:

$$\frac{\partial n_i}{\partial t} + \vec{\nabla} \cdot (n_i \vec{v}) - \vec{\nabla} \cdot \left(\mathcal{D} \vec{\nabla} n_i \right) = C(n_i, n_j, T) - D(n_j, T) n_i$$

- Three processes are acting to change n_i: advection, diffusion and chemical reactions (RHS)
- Convenient to write the reaction term in two parts, one corresponding to formation (C) and the other to destruction (D)

Governing equations

 The number density n_i of a chemical species i evolves according to:

$$\frac{\partial n_i}{\partial t} + \vec{\nabla} \cdot (n_i \vec{v}) - \vec{\nabla} \cdot \left(\mathcal{D} \vec{\nabla} n_i \right) = C(n_i, n_j, T) - D(n_j, T) n_i$$

- Three processes are acting to change n_i: advection, diffusion and chemical reactions (RHS)
- Convenient to write the reaction term in two parts, one corresponding to formation (C) and the other to destruction (D)

Governing equations (II)

- In astrophysical flows, we generally ignore the diffusion term, as it is much smaller than the advection term
- Characteristic diffusion length scale is given by:

$$L_{diff} \sim (D t)^{1/2}$$

- The diffusion coefficient $D \sim L_{mfp} v_{th}$, where L_{mfp} is the particle mean free path and v_{th} is the thermal velocity
- In the diffuse ISM (n = 1 cm⁻³,T = 10⁴K), we find that $L_{diff} \sim 10^{11} t^{1/2}$ cm (about 1pc in 10 Myr).

Governing equations (III)

- We are therefore left with a set of advection-reaction equations, one for each chemical species
- We generally simplify this set of equations using a technique called **operator splitting**
- Instead of solving the full equations, we separate the advection and reaction portions separately:

$$rac{\partial n_i}{\partial t} + ec{
abla} \cdot (n_i ec{v}) = 0$$

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = C(n_i, n_j, T) - D(n_j, T)n_i$$

Operator splitting

- Operator splitting the advection and reaction steps has a drawback: the introduction of a new source of truncation error
- Simplest splitting strategy:
 - Evolve advection eq. from t_0 to t_1
 - Using output from advection step, evolve reaction network from t_0 to t_1
 - Alternatively, we can invert the order of the steps, and solve the reaction substep first, followed by the advection substep

Operator splitting (II)

- This scheme is called "first-order splitting". It introduces a local error of $O(\Delta t)$.
- We can do better than this with a scheme known as "Strang splitting":
 - Evolve reaction network from t_0 to $t_0 + \Delta t/2$
 - Evolve advection step from t_0 to t_1
 - Evolve reaction network from $t_0 + \Delta t/2$ to t_1
- This scheme introduces a local error of $O(\Delta t^2)$.

Operator splitting (III)

- Note that if the reaction network is stiff, then we always want to evolve it last in our splitting scheme.
- This is to ensure that rapidly reacting species that should be in chemical equilibrium are indeed in equilibrium at the end of every timestep

Advection

- In general, we can use the same techniques to advect our set of number densities n_i that we use to advect the mass density ρ
- However, since we must conserve the total quantity of each element (hydrogen, helium, carbon etc.), plus the total charge, our number densities must also satisfy a set of N_{elem} + 1 constraint equations
- In Eulerian codes, the advection scheme typically does not guarantee that these constraint equations remain satisfied

Advection (II)

- We can ensure that the constraint equations are satisfied at the end of every advection step by directly adjusting our number densities n_i
- However, this strategy can be highly diffusive (see e.g. Plewa & Mueller, 1999)
- Plewa & Mueller suggest that one should instead adjust the <u>fluxes</u> of the various species to ensure local conservation

Consistent Multi-species Advection (CMA)

• Total flux of element a with mass fraction x_a :

$$F_a = x_a F_\rho$$

• Partial fluxes F_i do not, in general, sum to total flux F_a

$$F_a \neq \sum_i F_i$$

• Hence have to rescale the fluxes by a factor:

$$\phi = \frac{F_a}{\sum_i F_i}$$

In SPH...

- Advection in SPH is done by moving the particles directly.
- No need to worry about the advection errors (at least in terms of what they are doing to the species conservation).
- Chemical rate equation simply becomes:

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = C - D \, n_i$$

- If including the diffusion terms (e.g. Greif et al. 2009), then this can in principle become an issue.
- Also need to consider operator splitting the fluxes from the chemistry solve.

Reactions

- A typical chemical reaction network contains processes with a wide range of characteristic timescales
- The resulting rate equations are **stiff**
- This is a big problem: stiff ODEs can be solved explicitly only if very small timesteps are taken

Stiffness and stability

- Consider a system with a set of fast modes that rapidly reach equilibrium, and a set of slow modes that control the subsequent evolution
- Away from the equilibrium manifold, we get rapid evolution and explicit codes must take small timesteps
- BUT: errors (truncation & roundoff), and advection effects will always displace us from the equilibrium manifold

Stiffness and stability (II)

- We can avoid numerical instability by using an implicit technique
- One of the simplest possible implicit solvers is the 1st order backwards differencing formula (BDF):

$$\frac{n_{\rm i}(t_1) - n_{\rm i}(t_0)}{\Delta t} = C(t_1) - D(t_1)n_{\rm i}(t_1)$$

$$n_{i}(t_{1}) = \frac{n_{i}(t_{0}) + C(t_{1})\Delta t}{1 + D(t_{1})\Delta t}$$

Ist order BDF: pros and cons

- Pros:
 - Simple
 - Fast
 - Solutions are certain to remain ≥ 0
- Cons:
 - Inaccurate
 - No error control

Other solvers

- Can control the accuracy of the solution:
 - Higher order BDF (e.g. LSODE, VODE)
 - Implicit Runge-Kutta (e.g. SDIRK)
 - Rosenbrock (e.g. RODAS)
 - For a good overview of different techniques, see Sandu et al. (1997a,b)

Caution when using high-order solvers

- Discontinuities in the rate equations can produce problems when computing the Jacobian.
- Need to ensure the derivatives are continuous: see work by Marcus Röllig (2007)
- In high order solvers, the solution is not guaranteed to be positive.
- Need to sanity-check the output.
- Require the chemical reaction rates to be in a somewhat abstract form -- not ideal for getting to know how something works!

Benefits?

Aside from the accuracy issue:

- Adding new reactions to the set is trivial.
- No need to worry about how stiff the new reaction is compared to the others.
- Automatically "sub-cycles" to the required timestep
- These subroutines are often highly optimised.
- Many are also still maintained (less common with the older F77 routines).

Performance

- Implicit solvers typically require some form of Newton iteration
- Solution of a set of N_{sp} coupled equations requires the inversion of a $N_{sp} \times N_{sp}$ matrix
- Computational cost scales as N_{sp}³
- Values N_{sp} of = 50 400 are not uncommon in astrochemistry

Improving performance (1): exploiting sparseness

- Typically, any given reactant will react with only a small subset of the total number of species
- Hence our $N_{sp} \times N_{sp}$ matrix is <u>sparse</u>
- We can get an easy speedup by using a solver tailored for sparse systems
- Typical speedups of a factor of a few
- See Timmes 1999, Nejad 2005 for examples

Improving performance (II): dimension reduction

- If our cost is scaling as N_{sp}^{3} , then we can run faster if we can reduce N_{sp}
- An easy way to do this is by reducing the size of our chemical network
- Analysis of our chemical network can identify reactions and/ or reactants that are unimportant and that can safely be omitted
- To perform this analysis, we need to understand the region of n-T-A_V-space in which our models will evolve

Improving performance (II): dimension reduction

- The more we know about our application, the less conservative we need to be when reducing the kinetics
- Nevertheless, we're trading computer time for person time
- It would be convenient if we could automatically reduce the number of dimensions whenever appropriate without requiring human intervention
- This desire prompted the development of a technique called <u>Computational Singular Perturbation</u> (CSP)

CSP

- We can express our N_{sp} rate equations as a vector \mathbf{g} in an N_{sp} -dimensional vector space
- By choosing an appropriate set of basis vectors, we can transform **g** so as to decouple rapidly reacting modes from slowly reacting modes
- If we then assume that the rapidly reacting modes are in equilibrium, then we only need to solve for the time evolution of the slowly reacting modes
- We can do this dynamically i.e. we can recompute our decomposition whenever the fluid properties change
- For full details, see Lam (1993)

• This talk will be posted online (pdf)

http://www.ita.uni-heidelberg.de/~pcc/hipacc

A few useful references

General references

- Oran, E. & Boris, J., 2000, "Numerical Simulation of Reactive Flow", CUP
- Sportisse, B. 2007, Comput. Geosci., 11, 159

Implicit ODE solvers

- Hairer, E., Wanner, G., 1996, "Solving Ordinary Differential Equations, volume II: Stiff and differential algebraic problems", Springer Verlag
- Timmes, F.X. 1999, ApJS, 124, 241
- Nejad, 2005, Ap&SS, 299, I
- Sandu, A., et al., 1997a, Atmos. Environ, 31, 3151
- Sandu, A., et al., 1997b, Atmos. Environ, 31, 3459

A few more useful references

Other topics

- Plewa, T. & Müller, E. 1999, A&A, 342, 179 (CMA)
- Lam, 1993, Comb. Sci. Tech., 89, 375 (CSP)
- Pope, S. 1997, Comb. Theo. Modelling, 1, 41 (ISAT)

Seren download guide

Website: <u>http://dhubber.github.io/seren/seren.html</u>

[pcc@hyades ~]\$ git clone https://github.com/dhubber/seren.git

If you want to use the chemistry, you need to change to the 'chemistry' branch:

[pcc@hyades ~]\$ git checkout -b chemistry

[pcc@hyades ~]\$ git pull origin chemistry

What's where?

[pcc@hyades	s seren]\$ 1	s			
COPYING	docs	joinsims	makefiletail.mk	README.md	seren
datafiles	examples	Makefile	params.dat	scripts	src

For chemistry

	[pcc@hyade	es seren]	\$ ls					
	COPYING	docs	ic_BB	Makefile	params.dat	scripts	src	
	datafiles	example	s joinsims	makefiletail.mk	README.md	seren		
	[pcc@hyade	es seren]	\$ cd src/					
	[pcc@hyade	es_src]\$	ls					
	advance	ghosts	io	radial_average.F90	sph sph			
	analyse	gravity	main	radiation	sph_sim			
	BHtree	headers	mpi	setup	tests			
	chemcool	healpix	nbody	sinks	timestep			
	devel	ic	nbody_sim	sorts	turbulence	e		
	[pcc@hyade	es src]\$	cd chemcool,	/				
	[pcc@hyade	es chemco	ol]\$ ls					
	chemical_r	rate_coef	f.F90 do_c	hemcool_step.F90	solve_chem_	_timestep	.F90	
	chemistry_	_constant	s.F90 ism_	h_at_cool_rate.F90				
	compute_st	tim.F90	one_	one_chemcool.F90				
Interface between seren and chemistry								
					I ne I	terati	ve solver	

To switch the chemistry on...

- In Makefile, need to set:
 - CHEMCOOL = I
 - NCHEM = 2
- Need to add the abundance to the data files:
 - Add 'abundh2' and 'abundhp' to the file 'asciicolumns.dat'
 - In your initial conditions you will need to set these to the starting abundance.

To switch the chemistry on...

- In Makefile, need to set:
 - CHEMCOOL = I
 - NCHEM = 2
- Need to add the abundance to the data files:
 - Add 'abundh2' and 'abundhp' to the file 'asciicolumns.dat'
 - In your initial conditions you will need to set these to the starting abundance.